俐媽當年就是辛苦地征服了數學,才有機會進北一女及台大就讀,你們要好好吸收這篇菁華哪💪🏼💪🏼
來來來,筆記本準備好,
數學科致勝關鍵一次掌握!!
有看沒有懂的部分,
趕快利用時間釐清清楚~~
數學科會考30天衝刺重點
針對國中會考數學科考前準備:
會考難度為難易適中,較刁鑽的題目並不會出現太多,建議先把基本觀念及基本題型做熟,再來鑽研進階的題型。
會考考試時間80分鐘,總題數約25-30題,所以同學平時練習就必須習慣限時練習,才能適應考試時的做答速度。
考試的叮嚀:
考試難度難易適中,而且考題順序有先易後難的趨勢,所以前面做答不要花過多的時間,以免後面考題無法完成做答,再來非選部份盡量不要繳白卷,非選採取部份給分,重點在於解題的策略與表達,表達出解題策略越完整分數越高,所以非選記得務必盡量做答。
1.正負數與數線:
(1)「絕對值」代表「到原點的距離」、「相減取絕對值」
代表「兩點距離」
(2)科學記號的應用問題通常都會搭配四則運算
(3)新舊數線轉換切記「差成比例」
2.因倍數與公因倍數:
質數的判定、互質的判定還有短除法請熟練!
3.分數:
(1)四則運算切記「先乘除,後加減,但次方優先!」
(2)括號的處理務必「由小到大」且小心變號!
4.一元一次方程式:
應用題考列式
5.二元一次方程式:
(1)加減消去法
(2)代入消去法
(3)應用題
6.坐標平面:
(1)基本的象限考正負;點的移動x右加左減,y上加下減
(2)水平線y相同,鉛直線x相同
(3)二元一次直線方程式畫圖!
7.比與比例:
雙比例問題,務必調整到符合題意
8.函數:
線型函數應用問題可以利用「差成比例」處理!
9.一元一次不等式:
(1)基本的一元一次不等式求x範圍
(2)乘除負數須變向
10.乘法公式與多項式:
(1)乘法公式求值請觀察數字之間的關聯性
(2)多項式長除法
(3)因式倍式關係。
11.二次方根與勾股定理:
(1)基本的化成最簡根式、有理化、四則運算
(2)根號估計
(3)勾股定理搭配幾何一起考
12.因式分解:
(1)提公因式
(2)十字交乘
13.一元二次方程式:
(1)因式分解求x
(2)配方求x
14.等差數列:
(1)基本的循環用除法看餘數
(2)等差數列換首項公差處理
(3)等差數列求和
15.平面幾何:
(1)對稱圖形
(2)外角定理
(3)中垂線性質到兩端點等距、角平分線性質到兩夾邊等距
(4)30度-60度-90度 邊長比「1:根號3:2」
16.三角形:
(1)三角形兩邊之和大於第三邊
(2)大角對大邊小角對小邊偶爾會出
(3)三角形的全等證明
17.平行與四邊形:
(1)平行時,同位角、內錯角相等,同側內角互補
(2)遇梯形常做的幾種輔助線
18.相似形:
(1)AA相似
(2)相似形的「對應角相等」、「對應長成比例」
、「面積比等於對應長度平方比」
19.圓形:
(1)扇形、弧長、弓形
(2)相切要想到垂直與切線段等長
(3)圓周角、弦切角
20.三角形的三心:
(一)外心:(1)到三頂點等距
(2)直角三角形外心在斜邊中點
(二)內心:(1)到三邊等距
(2)r的兩種求法請複習
(三)重心:(1)中線長度比為2:1
(2)面積六等分
21.二次函數拋物線:
(1)開口的方向和大小
(2)配方法求頂點求最大最小
(3)平移要想到看頂點的移動
22.立體圖形:
(1)展開圖還原
(2)柱體的體積與表面積
23.統計:
(1)盒狀圖和圓餅圖的四分位數
(2)次數分配圖呈對稱,平均數和中位數會相等!
24.機率:
(1)列表討論
(2)畫樹狀圖
算幾不等式題目面積 在 辣媽英文天后 林俐 Carol Facebook 八卦
Wow! 滿滿滿的會考數學重點吔😍
來來來,紙筆趕快準備好!
數學科會考精華重點,
帶你一手掌握致勝關鍵!
數學科會考30天衝刺重點
考前最後30天,
建議同學,調整好生理時鐘,
讓自己的大腦習慣
在10:30到11:50這段時間算數學。
切記每次考試前都花10分鐘的時間快速總複習,
把公式、重要性質、常忘常錯的地方,
用這個關鍵10分鐘掃過一遍。
考前最後30天以算新題
培養對沒看過的題目的臨場反應為主,
有錯的題目訂正完,
把關鍵寫在考前10分鐘的快速總複習筆記上,
下次考前再複習一次!
以下是會考精華重點,
這些重點不只會在選擇出現,
還可能出現在非選!
好好把握下列重點,
拿到數學滿分的成績單時別太意外!😂
1.正負數與數線:
「絕對值」代表「到原點的距離」、
「相減取絕對值」代表「兩點距離」
這種代數轉幾何的考法總是考不膩;
科學記號的應用問題通常都會搭配四則運算;
新舊數線轉換切記「差成比例」!
2.因倍數與公因倍數:
質數的判定、互質的判定還有短除法請熟練;
難題用標準分解式處理!
3.分數:
四則運算切記「先乘除,後加減,但次方優先!」,
還有括號的處理務必「由小到大」且小心變號!
4.一元一次方程式:
一元一次式的「化簡」切記「只能通分,不能同乘」;
應用題考列式也很常見。
5.二元一次方程式:
基本的分式解聯立請小心隱形的括號;
近年來也常考三格漫畫的應用問題,命中不用太訝異!
6.坐標平面:
基本的象限考正負;點的移動x右加左減,y上加下減;
「點到x軸的距離」=「y坐標取絕對值」,
「點到y軸的距離」=「x坐標取絕對值」;
水平線y相同,鉛直線x相同;
還有最常考的二元一次直線方程式畫圖!
7.比與比例:
雙比例問題考到爛,務必調整到符合題意。
8.函數:
線型函數應用問題可以利用「差成比例」處理!
9.一元一次不等式:
有基本的一元一次不等式求x範圍;
進階有天平問題和水量的應用問題。
10.乘法公式與多項式:
利用乘法公式求值請用力觀察數字之間的關聯性;
多項式長除法也很愛考;因式倍式關係要會看。
11.二次方根與勾股定理:
基本的化成最簡根式、有理化、四則運算要熟;
進階的根號估計也是大熱門;
勾股定理近年來都搭配後面幾何一起考。
12.因式分解:
通常喜歡考提公因式因式分解,再搭配次方的運算請小心。
13.一元二次方程式:
基本的十字交乘、配方法解x;
給兩根求方程式用倒帶;
觀念題小心消去未知數可能會減根。
14.等差數列:
基本的循環用除法看餘數、
等差數列換首項公差處理、
等差數列求和都是基本款;
近幾年等差數列喜歡搭配不等式請小心!
15.平面幾何:
對稱圖形不難;
外角定理在角度的計算超常用;
中垂線性質到兩端點等距、
角平分線性質到兩夾邊等距考到爛!
30度 - 60度 - 90度 邊長比「1:根號3:2」必考!
多邊形內角和、正多邊形內角和外角
要算到不小心背起來;
正六邊形、正八邊形、正12邊形
都是近年來考試重點。
16.三角形:
三角形兩邊之和大於第三邊、
大角對大邊小角對小邊偶爾會出;
三角形的全等證明要有考非選的心理準備。
17.平行與四邊形:
遇平行線延長會比較容易看;
平行時,同位角、內錯角相等,
同側內角互補超常用;
遇梯形常做的幾種輔助線要複習。
18.相似形:
常見的相似三角形組合要複習;
解題利用相似形的
「對應角相等」、「對應長成比例」、
「面積比等於對應長度平方比」這些性質;
要宣告三角形相似用相似性質,
要宣告非三角形的多邊形相似
則要一一檢查每一個對應角都相等,
每一個對應邊都成比例!
19.圓形:
考扇形、弧長、弓形算是基本款;
考相切要想到(1)垂直(2)切線段等長;
圓周角、圓內角、圓外角、弦切角也都很常考;
兩圓相切要連接兩圓圓心和切點;難題想到對稱性!
20.三角形的三心:
(1)外心:
到三頂點等距;
直角三角形外心在斜邊中點;
等腰三角形的R要會求;
角度可以利用圓周角和圓心角關係,
或是等腰三角形處理。
(2)內心:
到三邊等距;
r 的兩種求法請複習;
長度還可考求切線段長;
角度可利用角平分令x、x、y、y;
面積的兩種考法請複習。
(3)重心:
長度想到2比1,
面積想到六塊小三角形面積相等
21.二次函數拋物線:
開口的方向和大小要會看;
配方法求頂點求最大最小值必考!
考平移要想到
(1)看頂點的移動(2)開口不變a不變;
難題想到對稱性!
22.立體圖形:
近年來喜歡考空間觀念中的展開圖;
考角柱算是中規中矩;
靈活考題可能會搭配水量甚至考不等式!
23.統計:
給原始資料、給表、給直方圖、給圓餅圖,
中位數都要會求!
盒狀圖和圓餅圖也很常考,
特別是盒狀圖常會問四分位距的相關問題!
進階喜歡考圖形的轉換;
還有對稱圖形的平均數和中位數會相等!
24.機率:
列表討論、畫表格、畫樹狀圖必可解!
算幾不等式題目面積 在 尹俐 Julia Facebook 八卦
來來來,紙筆趕快準備好!
數學科會考精華重點,
帶你一手掌握致勝關鍵!
數學科會考30天衝刺重點
考前最後30天,
建議同學,調整好生理時鐘,
讓自己的大腦習慣
在10:30到11:50這段時間算數學。
切記每次考試前都花10分鐘的時間快速總複習,
把公式、重要性質、常忘常錯的地方,
用這個關鍵10分鐘掃過一遍。
考前最後30天以算新題
培養對沒看過的題目的臨場反應為主,
有錯的題目訂正完,
把關鍵寫在考前10分鐘的快速總複習筆記上,
下次考前再複習一次!
以下是會考精華重點,
這些重點不只會在選擇出現,
還可能出現在非選!
好好把握下列重點,
拿到數學滿分的成績單時別太意外!😂
1.正負數與數線:
「絕對值」代表「到原點的距離」、
「相減取絕對值」代表「兩點距離」
這種代數轉幾何的考法總是考不膩;
科學記號的應用問題通常都會搭配四則運算;
新舊數線轉換切記「差成比例」!
2.因倍數與公因倍數:
質數的判定、互質的判定還有短除法請熟練;
難題用標準分解式處理!
3.分數:
四則運算切記「先乘除,後加減,但次方優先!」,
還有括號的處理務必「由小到大」且小心變號!
4.一元一次方程式:
一元一次式的「化簡」切記「只能通分,不能同乘」;
應用題考列式也很常見。
5.二元一次方程式:
基本的分式解聯立請小心隱形的括號;
近年來也常考三格漫畫的應用問題,命中不用太訝異!
6.坐標平面:
基本的象限考正負;點的移動x右加左減,y上加下減;
「點到x軸的距離」=「y坐標取絕對值」,
「點到y軸的距離」=「x坐標取絕對值」;
水平線y相同,鉛直線x相同;
還有最常考的二元一次直線方程式畫圖!
7.比與比例:
雙比例問題考到爛,務必調整到符合題意。
8.函數:
線型函數應用問題可以利用「差成比例」處理!
9.一元一次不等式:
有基本的一元一次不等式求x範圍;
進階有天平問題和水量的應用問題。
10.乘法公式與多項式:
利用乘法公式求值請用力觀察數字之間的關聯性;
多項式長除法也很愛考;因式倍式關係要會看。
11.二次方根與勾股定理:
基本的化成最簡根式、有理化、四則運算要熟;
進階的根號估計也是大熱門;
勾股定理近年來都搭配後面幾何一起考。
12.因式分解:
通常喜歡考提公因式因式分解,再搭配次方的運算請小心。
13.一元二次方程式:
基本的十字交乘、配方法解x;
給兩根求方程式用倒帶;
觀念題小心消去未知數可能會減根。
14.等差數列:
基本的循環用除法看餘數、
等差數列換首項公差處理、
等差數列求和都是基本款;
近幾年等差數列喜歡搭配不等式請小心!
15.平面幾何:
對稱圖形不難;
外角定理在角度的計算超常用;
中垂線性質到兩端點等距、
角平分線性質到兩夾邊等距考到爛!
30度 - 60度 - 90度 邊長比「1:根號3:2」必考!
多邊形內角和、正多邊形內角和外角
要算到不小心背起來;
正六邊形、正八邊形、正12邊形
都是近年來考試重點。
16.三角形:
三角形兩邊之和大於第三邊、
大角對大邊小角對小邊偶爾會出;
三角形的全等證明要有考非選的心理準備。
17.平行與四邊形:
遇平行線延長會比較容易看;
平行時,同位角、內錯角相等,
同側內角互補超常用;
遇梯形常做的幾種輔助線要複習。
18.相似形:
常見的相似三角形組合要複習;
解題利用相似形的
「對應角相等」、「對應長成比例」、
「面積比等於對應長度平方比」這些性質;
要宣告三角形相似用相似性質,
要宣告非三角形的多邊形相似
則要一一檢查每一個對應角都相等,
每一個對應邊都成比例!
19.圓形:
考扇形、弧長、弓形算是基本款;
考相切要想到(1)垂直(2)切線段等長;
圓周角、圓內角、圓外角、弦切角也都很常考;
兩圓相切要連接兩圓圓心和切點;難題想到對稱性!
20.三角形的三心:
(1)外心:
到三頂點等距;
直角三角形外心在斜邊中點;
等腰三角形的R要會求;
角度可以利用圓周角和圓心角關係,
或是等腰三角形處理。
(2)內心:
到三邊等距;
r 的兩種求法請複習;
長度還可考求切線段長;
角度可利用角平分令x、x、y、y;
面積的兩種考法請複習。
(3)重心:
長度想到2比1,
面積想到六塊小三角形面積相等
21.二次函數拋物線:
開口的方向和大小要會看;
配方法求頂點求最大最小值必考!
考平移要想到
(1)看頂點的移動(2)開口不變a不變;
難題想到對稱性!
22.立體圖形:
近年來喜歡考空間觀念中的展開圖;
考角柱算是中規中矩;
靈活考題可能會搭配水量甚至考不等式!
23.統計:
給原始資料、給表、給直方圖、給圓餅圖,
中位數都要會求!
盒狀圖和圓餅圖也很常考,
特別是盒狀圖常會問四分位距的相關問題!
進階喜歡考圖形的轉換;
還有對稱圖形的平均數和中位數會相等!
24.機率:
列表討論、畫表格、畫樹狀圖必可解!
算幾不等式題目面積 在 Re: [中學] 算幾不等式的右邊可否為未知數- 看板Math 的八卦
※ 引述《pop10353 (卡卡:目)》之銘言:
: EX.
: 題目為
: 兩變動三角形的面積和之最小值
: 5*(20-X)*(1/2)+X*[5X/(20-X)]*(1/2)
: 其中20>X>0
: 整理後 X^2 + (20-X)^2
: (5/2) * _______________
: 20-X
: **正解做法
: 200
: => { _____ + -X } *5
: 20-X
: 200
: => { (20-X) + _____ -20 }*5
: 20-X
: => >= [ 2*(200)^(1/2)-20 ]*5
: MIN=100*√2 -100
: **令解
: 整理後 X^2
: (5/2) *[ _____ + (20-X) ]
: 20-X
: >= (5/2) * 2X
: 因為"=" 成立時 元素須均等 limit存在
: X^2
: _____ = (20-X) => 算出 X=10 帶回原式
: 20-X
: MIN = 50
: 請問....矛盾點在??
: 我想了很久.... 老師說我固執... 唉 我也不想---
這是很多同學都有的疑惑,求極值時常會用此方法求.
我一直想回答此問題,但總覺得說得不清楚,直到之前才有新的想法.
今天看到這篇,又有回文做了正面說明,現在剛好可以從反面來說.
以下純粹論數學,並非針對原PO,文字若有冒犯,請包涵.
原PO的問題比較複雜,換簡單一點的題目來看.
1. 0≦x≦π/2 , 求 sinx + cosx 的極小值.
根據算幾不等式 , (sinx + cosx)/2 ≧ √(sinxcosx) .
等號成立在sinx = cosx , 即 x = π/4 . 代回原式得 sinx+cosx 的最小值為√2 .
2. x>0 , 求 (8/x) + x^2 的極小值.
<法1> 根據算幾不等式 , (8/x + x^2)/2 ≧ √(4x) .
等號成立在8/x = x^2 ,即 x = 2 . 代回原式得 8/x + x^2 的最小值為8 .
<法2> 根據算幾不等式 , (8/x + x^2/2 + x^2/2 )/3 ≧ (2x^3)^(1/3) .
等號成立在8/x = x^2 /2 ,即 x = 2^(4/3) .
代回原式得 8/x + x^2 的最小值為3* 2^(5/3).
<法3> 根據算幾不等式 , (8/x + x^2/3 + x^2/3 +x^2/3 )/4 ≧ ......
依此類推,愛分幾項就分幾項,一題多解,只是求出的答案都不同而已.
3. 0<x<π/2 , 求 (sinx)^3 cosx 的極大值.
根據算幾不等式 , (sinx+sinx+sinx+cosx)/4 ≧ (sin^3x cosx)^(1/4) .
等號成立在sinx = cosx ,即 x = π/4 . 代回原式得 sin^3x cosx 的極大值為 1/4 .
4. 換應用題,在河邊用長1m的繩子圍地,要圍成矩形ABCD,AB是河岸,另外三邊用繩子圍.
問要如何圍,圍到的地會最大?
設BC長x=DA,則0<x<1.那麼CD=(1-2x)=AB.矩形面積為x(1-2x) .
根據算幾不等式 ,[ x + (1-2x) ]/2 ≧ √[x(1-2x)] .
等號成立在 x=1-2x , 即x=L/3, 代回x(1-2x)得最大面積為1/9 m^2 .
5. 0<x<π/2 , 求 2/sinx + 3/cosx 的極小值.
<法1> 根據算幾不等式, [2cscx + 3secx]/2 ≧ √[6cscxsecx)]
等號成立在 2/sinx = 3/cosx 時 , 即x = arctan(2/3) .
代回原式得 2/sinx + 3/cosx 的極小值為2√13 .
<法2> 根據科西不等式, [2/sinx + 3/cosx][sinx + cosx] ≧ [√2 + √3 ]^2 ,
等號成立在√[2/sinx] / √sinx = √[3/cosx] / √cosx 時, 即x= arctan(√(2/3)) .
代回原式得 2/sinx + 3/cosx 的極小值為 √10 + √15 .
<法3> 根據科西不等式,
[2/sinx + 3/cosx][sin^2x + cos^2x] ≧ [√(2sinx) + √(3cosx)]^2 .
等號成立在√[2/sinx] / sinx = √[3/cosx] / cosx 時, 即x= arctan((2/3)^(1/3)).
代回原式得 2/sinx + 3/cosx 的極小值為 [2^(2/3) + 3^(2/3)]^(3/2) .
------
好啦,例子夠多了.我要表達的是,不等式一邊仍然有未知數,如果這樣沒關係的話,
那麼不管題目怎樣出,問題出的多複雜.我只要隨便寫個算幾或科西,
然後算出等號成立時的解代回就好了,數學好簡單.
高三不等式占了一章(我不確定現在教材還是這樣),其實上面兩行就夠了.
如果可以這樣算的話,那麼其他準備數學競賽而辛苦練習不等式的同學就全部是笨蛋了.
以上的例子只有第5題<法3>算出來的答案是對的,其他明顯全部都錯.
而第5題<法3>的解法也是錯的,因為右邊仍然有未知數x,得出正確答案只是碰巧而已.
所以就算你以前曾經用此方法算對答案得到分數而嚐到甜頭之後一直用,
那也只是運氣好而已.不代表方法就對.
學校老師,補習班都會教說用等號成立的等式下去解題會比較快,他們說得沒錯.
但不是說隨便寫個算幾什麼的就好,是要想辦法湊到一邊沒有未知數,
而如何湊出來當然就是看功力了.
最後,為何我要舉一堆反例,而一直不說明為什麼不能這樣算呢.
因為一個命題如果是對的,才需要證明;錯的命題舉出反例即可.
方法也是一樣,方法是否可行?是的話才需要說明;不是的話舉反例就夠了.
所以不應該是問說為什麼會有反例,為什麼這方法會錯.
而是你要用此方法算時,就要問自己:
這方法的根據到底在哪裡,我到底是憑什麼認為這方法是對的?
沒有確實根據的話,我又怎麼能夠相信這方法算出來的答案?
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 123.204.160.242
... <看更多>