感謝筠昕,提供了一個俐媽一輩子也不可能涉足的大餐—「數學專有名詞」🔢🆙
除了圖片中的老師,台大補習班•李傑數學還有很多很專業、十分願意為學生付出的老師,請大家多多支持哦🙏🏼
—————————————
➕➖昕姊+俐媽英文教室✖️➗
1️⃣ 數與式
1.有理數 rational number
2.封閉性 closure property
3.算幾不等式 Arithmetic and Geometric Mean Inequality
2️⃣ 多項式
1.除法原理 Division Principle
2.餘式定理 Remainder Thm
3.因式定理 Factor Thm
4.牛頓定理 Newton Rational Root Thm
5.插值多項式 Interpolation Polynomial
6.標準式 standard form
7.共軛複數 conjugate complex number
8.一元二次方程式 quadratic equation
9.根與係數(韋達定理) Vi`ete Thm
10.虛根定理 Complex Conjugate Root Thm
11.勘根定理 Intermediate Value Thm
12.二次函數 quadratic function
13.奇函數 odd function 偶函數 even function
14.分式不等式 fractional inequality
3️⃣ 指數對數
1.指數律 law of exponent
2.指數函數 exponential function
3.凹凸性 concavity
4.對數律 law of logarithm
5.對數函數 logarithmic function
6.真數 antilogarithm
7.尾數 mantissa
8.首數 characteristic
9.線性內插 linear interpolation
10.單利 simple interest 複利 compound interest
4️⃣ 數列級數
1.等差(A.P) Arithmetic Progression Sequence
2.等比(G.P) geometric progression or geometric sequence /geometric series
3.遞迴 recursion
4.數學歸納法 Mathematical Induction
5️⃣ 排列組合
1.樹狀圖 tree diagram
2.加法原理 addition principle
3.乘法原理 multiplication principle
4.取捨原理 inclusion and exclusion principle
5.直線排列 permutation
6.組合 combination
7.二項式定理 Binomial Theorem
6️⃣ 機率與數據分析
1.古典機率 classic probability
2.統計機率 statistic probability
3.條件機率 conditional probability
4.貝氏定理 Bayes Theorem
5.獨立事件 independent event
6.標準差 Standard Deviation
7.眾數 Mode
8.中位數 Median
9.平均數 Mean
10.線性變換 Linear Transfer
11.數據標準化 standardization
12.相關 linear correlation
13.散布圖 scatter plot
14.相關係數 correlation coefficient
15.迴歸直線 regression line
7️⃣ 三角函數trigonometric function
1.斜邊 hypotenuse
2.對邊 opposite side
3.臨邊 adjacent side
4.始邊 initial side
5.終邊 terminal side
6.同界角 coterminal angle
7.廣義角 generalized angle
8.極座標 Polar coordinates
9.正弦定律 Law of Sine
10.餘弦定律 Law of Cosine
11.和角公式 angle addition formula
謝謝筠昕,其他數學達人請接棒🏹
————————————
#辣媽英文天后林俐carol #俐媽英文教室 #俐媽英文教室徵稿中 #mathematics #jackmath #李傑數學 #品質保證
「算幾 不等式 數學歸納法」的推薦目錄:
- 關於算幾 不等式 數學歸納法 在 辣媽英文天后 林俐 Carol Facebook
- 關於算幾 不等式 數學歸納法 在 C.C.M Math Facebook
- 關於算幾 不等式 數學歸納法 在 [問題] 請問如何證明算幾不等式? - 精華區tutor - 批踢踢實業坊 的評價
- 關於算幾 不等式 數學歸納法 在 算幾不等式的7 個証明Part 1:數學歸納法 - YouTube 的評價
- 關於算幾 不等式 數學歸納法 在 Re: [問題] 算幾不等式為何必須限制R+ - tutor - PTT職涯區 的評價
- 關於算幾 不等式 數學歸納法 在 算幾不等式數學歸納法的價格和推薦,PTT和顧問們這樣回答 的評價
算幾 不等式 數學歸納法 在 C.C.M Math Facebook 八卦
分享一下:#靠北中女中 (中女中的藍老師)
#靠北中女中6437
【數學學測準備方向分享】
1、前言:
高中數學簡單嗎?高中階段的數學,要問倒一些所謂的名師甚至是教授其實是很容易的(比如說IMO等級的題目),但是學測所要考數學,因為有範圍與限制,
準備就不是那難了。通常沒辦法考好的原因,都是準備方式出了問題。
2、學測的考題方向:
學測的範圍是依據103課綱微調(http://www.ceec.edu.tw/ 99課綱微調/99課綱微調-學測數學考試說明.pdf)。
不像是段考或是模考有時會有超出課綱範圍的題目。但是許多題目是經過教授精心設計過,要見過與講義參考書類似的題目機率很低。
以下是大考中心公布的測驗目標:
(1)測驗概念性知識:
能確認基本的數學原理與概念。(約考4題)
(2)測驗程序性知識:
能讀圖、查表或運用適當的公式與解題步驟。 (約考10題)
(3)測驗解決問題的能力:
能應用數學知識、選擇有效策略及推理能力解決問題,並能檢驗結果的合理性與正確性。(約考6題)
因此,把自己的觀念弄清楚,學習想問題的思路,是想拿高分最重要需要培養的方法。
3、準備時常陷入的迷思:
(1)做大量題目就有效。
做題目再準備時很重要,但是在觀念還沒讀通之前,做題目所得到的知識是很零碎的。
(2)做過多與課綱外(舊課綱)的難題。
學測命題有課綱當依據,這樣有些是在做無效的練習。
(3)記憶過多的速解與妙解。
學測考題經過教授精心設計,速解法通常無用武之地,題目是需要用課本的基本定義與定理去思考。
最經典的一個例子是104年學測正八邊形線性規劃那一題,在市面上的所有參考書與講義不會有這題,
如果你沒有把平行線法的概念弄的很清楚,是不可能把這一題解出來。每年都會有幾題這樣的題目,
高手的決勝之處通常也在這幾題。
4、準備方式:
(1)將課綱內的定義、定理的來龍去脈弄清楚。
建議:找一本將觀念說明很清楚的書籍下手,最方便取得就是課本,因為課綱之外的內容不會出現在課本。課本的內容是主幹,先有主幹再加枝葉。
課本的內容、每個定義、定理、例題、習題應該要讀到滾瓜爛熟,每個概念都要想清楚。
(2)選一本好的複習參考書(講義),做到爛熟。
建議:好的參考書一本就夠了。有觀念分析、解題思路分析,以及題目難度分級的最好。如果對於一個題目,莫名其妙就迸出答案而沒有講解,
那可能不太適合。對照書中的內容可當作課本重點的整理,然後把其中的題目當作補充。
(3)歷屆的大考題,好好一題一題想完做完。做題目先不求快,先求懂。
(4)歷屆的模考題。
建議:模考題每份命題水準的落差可能極大,到接近學測時可以定期給自己計時模擬考,沒考好不用灰心,好好的檢討。
(5)自己做筆記,統整的自己不熟悉的概念,別人整理的,永遠是別人的東西。
5、注意事項:
(1)養成畫正確圖形的習慣。將函數的圖形與幾何的題目依照正確的比例作圖。同學大部分只畫略圖,以為沒什麼關係。
但只要看看這幾年學測及指考對畫圖的要求,就知道正確畫圖的重要,有時候從正確的圖就可以觀察出答案,不合的比例可能會讓你答錯。
(2)不可瞧不起基本操作。有小聰明的同學,總是很不想放下身段去做一些基本的操作,比如:勘根、數學歸納法、數列算幾項等等。
很多同學在複習這幾個章節都是用看的,而不動手。但事實上,對概念的體會,經常是從基本操作來的。不動手的結果是:經常自以為會了,其實並不會。
(3)製作屬於自己的錯誤訂正筆記本。分析自己的錯誤類型,將不會寫(或寫錯)的題目記在的筆記本上,並將他對應的數學概念、解題的思路、關鍵步驟一同
記錄。
(4)答題順序建議是單選,選題,多選(期望值最低)。千萬不要從第一題埋頭做下去,先把比較簡單的做出來,再做比較困難的題目。
(5)學校停課這段時間可以開始做模考題計時訓練。
(a)時間宜選擇在學測考試時段。(b) 計時80或90分鐘的時間。(少於學測時間)(c)培養耐力與訓練如何分配時間【要認真】
(6) 「永遠來得及,千萬不要放棄」高三愈到後來,愈是人心惶惶。所有意識到壓力和想考好的考生都會萌生放棄的念頭。
但是大考真的是在比耐力,沒有人是唸完才去參加大考的!
6、後記:
自然組同學下學期開始學微積分,除了指考比重占很大外(接近30%),也是高中數學銜接大學最重要的課程,值得大家好好花時間研讀。微積分把同學高中學
的一些數學問題做了統合,比如以前我們求極值,大概就是用配方法、不等式,但學會微分後,只要去討論臨界點就可以了。社會組同學也不用太害怕指
考,因為這幾年數乙的題目都很簡單,自然組跨考已經沒優勢了。
數學其實是一門很有趣的學科,但是在中學階段太多機械式與速度的訓練,又有不少打擊信心的考試,讓不少人失去信心與樂趣。一些有理想的老師
會盡力的去讓同學體會數學之美,但是在大環境之下也不免要妥協一些事,祝福所有考生學測考試順利。
投稿日期: 2017年12月7日 13:22 CST
算幾 不等式 數學歸納法 在 算幾不等式的7 個証明Part 1:數學歸納法 - YouTube 的八卦
Your browser can't play this video. Learn more. Switch camera. ... <看更多>
算幾 不等式 數學歸納法 在 Re: [問題] 算幾不等式為何必須限制R+ - tutor - PTT職涯區 的八卦
引述《jerrylau (keep it simple)》之銘言: : 標題: [問題] 算幾不等式為何必須 ... 我個人認為無論如何都要論證廣義的算幾不等式(使用數學歸納法) 這是一個數學 ... ... <看更多>
算幾 不等式 數學歸納法 在 [問題] 請問如何證明算幾不等式? - 精華區tutor - 批踢踢實業坊 的八卦
麻煩大家 就是 算術平均數大於等於幾何平均數
謝謝
--
親愛的
有時候, 你汲汲於追求你現在想要的
卻忽略了你真正需要的, 你真正想擁有的
身邊有很多事與物..可能都被你忽略了
快仔細去想想..多看看身邊的東西....
等到錯過了..你千萬分的後悔都來不及了
--
※ 發信站: 批踢踢實業坊(ptt.csie.ntu.edu.tw)
◆ From: 219.91.112.74
> -------------------------------------------------------------------------- <
作者: hopeless (再見了我的快樂) 看板: tutor
標題: Re: [問題] 請問如何證明算幾不等式?
時間: Thu May 8 22:24:01 2003
用反證吧
a+b<2[(ab)^1/2] 兩邊平方
a^2+2ab+b^2 <4ab 4ab移到左邊
a^2-2ab+b^2 <0
(a+b)^2 <0
a,b 屬於實數而且大於0
所以矛盾
所以可以得證算術平均數大於等於幾何平均數
--
※ 發信站: 批踢踢實業坊(ptt.csie.ntu.edu.tw)
◆ From: 203.68.107.72
> -------------------------------------------------------------------------- <
作者: HCsword (下一決戰日 5/12) 看板: tutor
標題: Re: [問題] 請問如何證明算幾不等式?
時間: Fri May 9 00:47:41 2003
應該不用反證吧....
令根號a,b為實數,可得由根號a,b構成的算式為實數(實數的封閉性)
實數的平方為正數或零
(根號a-根號b)^2大於等於0
a+b-2根號ab大於等於0
移項
a+b大於等於2根號ab
(a+b)/2大於等於根號ab
而根號a,b為實數的條件:a,b大於等於零
--
※ 發信站: 批踢踢實業坊(ptt.csie.ntu.edu.tw)
◆ From: 140.112.212.117
> -------------------------------------------------------------------------- <
作者: HCsword (下一決戰日 5/12) 看板: tutor
標題: Re: [問題] 請問如何證明算幾不等式?
時間: Fri May 9 00:53:32 2003
尚有另外一個方法,就是減減看
(a+b)/2-根號ab,配方後為(根號a-根號b)^2/2,而後討論ab的性質:
若ab小於零,則根號ab為虛數,我記得虛數是沒有大小之分的,
所以討論到大小,就有一個先決的條件是不討論虛數,
因此可得,在ab大於等於0的情形下,兩數的算幾不等式是成立的,
而在用數學歸納法,即可求得算幾不等式成立。
--
※ 發信站: 批踢踢實業坊(ptt.csie.ntu.edu.tw)
◆ From: 140.112.212.117
> -------------------------------------------------------------------------- <
作者: johnwu0826 (AJ八代超帥) 看板: tutor
標題: Re: [問題] 請問如何證明算幾不等式?
時間: Fri May 9 01:34:38 2003
算幾不等式的先決條件是
變數皆大於等於零
所以不用討論正負的問題
算幾不等式用數學歸納法證其實還蠻複雜的
在此發表一下
首先兩個變數的算幾不等式如上一位版友證的
還有一個方法是用幾何證的
太麻煩打了就先跳過
再來要證四個的算幾不等式
需要利用兩個的算幾不等式
證法如下
欲證:(a+b+c+d)/4大於等於(abcd)^(1/4)
pf:(a+b+c+d)/4=[(a+b)/2+(c+d)/2]/2
大於等於{[(a+b)/2]*[(c+d)/2]}^(1/2)
大於等於{[(ab)^(1/2)]*[(cd)^(1/2)]}^(1/2)
=(abcd)^(1/4)
由上可知
2的冪次方個的算幾不等式
皆可用上述方法證明
要證8個 16個 ... 都可以
但必須依照2→4→8→16→32→...的順序
可用數學歸納法的想法得知2的冪次方的算幾不等式皆成立
接下來要證三個的
需要利用四個的
證法如下
欲證:(a+b+c)/3大於等於(abc)^(1/3)
pf:首先令k=(a+b+c)/3 => a+b+c=3k
則利用四個的算幾不等式可知:(a+b+c+k)/4大於等於(abck)^(1/4)
=>(3k+k)/4大於等於(abck)^(1/4)
=>k大於等於(abck)^(1/4)
兩邊同時四次方=>k^4大於等於abck
兩邊同約掉k=>k^3大於等於abc
兩邊同開三次方根=>k大於等於(abc)^(1/3)
=>(a+b+c)/3大於等於(abc)^(1/3) 得證
接下來要證五個的
證法我簡略點講
首先要令個變數k=(a+b+c+d+e)/5
接著利用8個算幾不等式可知:(a+b+c+d+e+k+k+k)/8大於等於(abcdekkk)^(1/8)
利用剛剛三個的方法慢慢化簡就可以得證
接下來證六個的
應該可以很清楚知道
首先要令變數k=(a+b+c+d+e+f)/6
接著在利用8個的算幾不等式如法炮製即可得證
證7個的也是利用8個的
再來應該可以很明顯看出
要證9個10個11個12個13個14個15個
皆須利用16個的證
因此可推得
若個數介於2^(n-1)到2^n之間的的算幾不等式
皆可用2^n個的算幾不等式證明
至於2的冪次方又都可以證出
因此再利用數學歸納法的想法
可以推得所有自然數個的算幾不等式皆成立
(以上變數皆大於等於0不在重述)
--
※ 發信站: 批踢踢實業坊(ptt.csie.ntu.edu.tw)
◆ From: 211.74.5.112
> -------------------------------------------------------------------------- <
作者: rath (~魔女的條件~) 看板: tutor
標題: Re: [問題] 請問如何證明算幾不等式?
時間: Fri May 9 13:23:04 2003
其實可以直接從n=k證到n=k+1
--
렠 任思緒飛揚,隨筆而至ꄊ
--
※ 發信站: 批踢踢實業坊(ptt.csie.ntu.edu.tw)
◆ From: 210.85.78.224
... <看更多>