二次鋰離子電池簡介及常見分類
可充電式二次鋰離子電池是一種由正極材料、負極材料、電解液、隔膜和外殼所組成的電能儲存及釋放裝置,具有體積/質量能量密度大、工作電壓高、自放電效率低、無記憶效應等優點,已被廣泛應用於消費類電子產品中,亦開始大量使用在油電混和動力及純電驅動的汽機車上
正極材料:採用鈷酸鋰、錳酸鋰、鎳鈷錳(NCM)/鎳鈷鋁(NCA)三元材料、磷酸鋰鐵等,正極材料直接影響鋰電池標稱電壓、充放電性能、能量密度等主要特性,其反應為放電時鋰離子嵌入,充電時鋰離子脫嵌
負極材料:多採用石墨(鈦酸鋰電池的負極材料為鈦酸鋰),其反應為放電時鋰離子脫嵌,充電時鋰離子嵌入
隔膜:把正負極分隔開來,防止接觸短路
電解質/液:鋰鹽(六氟磷酸鋰)+溶劑的電解質溶液,鋰聚合物電池則採用膠狀/固態的聚合物材料取代液態溶劑,鋰離子可在電解質/液內移動並穿過隔膜以完成充放電反應
隨著應用領域的不斷擴展,對鋰離子電池的性能及安全要求也越來越高,使用者期待的理想型電池應具備安全、容量大、充電快、長壽、便宜等條件。然而魚與熊掌不可兼得,現有的二次鋰離子電池的主要性能指標是充放電倍率性能、能量密度、循環壽命、安全穩定性、運作溫度範圍、價格。當想要提高單一個指標時,其他的指標相對來說都會受到影響或減損。只有各項性能指標均衡的電池,才能適應更廣泛的使用環境,並在確保使用安全的同時,降低成本,提升效率,才能成為市場主流
三元鋰
三元鋰電池是指使用三元材料做為正極,石墨作為負極的鋰電池。正極三元材料內所含的鎳+鈷+錳 (NCM)或鎳+鈷+鋁(NCA)三種金屬材料比例可在一定範圍內調整,並且其性能隨著比例的不同而變化。鎳的作用是提升能量密度;鈷的作用是提升穩定性,並提高循環壽命和倍率性能;錳或鋁也有提高電池安全性及穩定性的作用
三元鋰電池正極材料分解溫度在200℃左右,分解時會產生劇烈化學反應產生更多熱量,熱量快速累積最後會導致熱失控,使用三元鋰電池時有較高的監控管理要求,使其可以工作在安全狀態下
特性:
1.標稱電壓:3.7V/3.8V
2.正極材料:鋰與NCM(鎳+鈷+錳)或NCA(鎳+鈷+鋁)三種金屬材料合金氧化物
3.負極材料:石墨
優點:
1.能量密度高,相同體積/重量的電池可攜帶的電能(Wh)最多
2.放電平台標稱電壓高
缺點:
1.安全性較差,無法承受劇烈撞擊、物理穿刺/擠壓、輸出短路、過充,將會導致起火及爆炸
2.耐高溫/熱穩定特性較差,高溫下容易導致熱失控,需要充足的管理措施,避免電池過熱發生危險
3.循環次數較少,壽命較短
4.製作正極材料需使用鎳/鈷/錳等重金屬,鈷的礦產資源有限價格高,且不落實回收會造成環境汙染
磷酸鋰鐵
磷酸鋰鐵電池是指用磷酸鋰鐵作為正極,石墨作為負極的鋰離子電池,製作磷酸鋰鐵正極材料不會涉及到鎳、鈷等金屬資源,相較於鈷,鐵與磷在地球資源含量十分豐富,原料成本較低。比起三元鋰,磷酸鋰鐵電池具有耐高溫特性,更好的安全穩定性,更長循環壽命的優勢
特性:
1.標稱電壓:3.2V/3.3V
2.正極材料:磷酸鋰鐵(LiFePO4)
3.負極材料:石墨
優點:
1.比起三元鋰,磷酸鋰鐵的循環次數較多,壽命較長
2.比起三元鋰,磷酸鋰鐵穩定性及安全性較高,即使發生劇烈碰撞/物理破壞/過充/短路也不會導致爆炸
2.功率密度大,可承受高倍率充放電
3.耐高溫特性好,於高溫環境下仍可釋放100%容量,正極材料的分解溫度高,不易出現熱失控
4.製造時沒有使用高單價重金屬鈷,材料成本低,並符合歐洲RoHS規定,為綠色環保電池
缺點:
1.比起三元鋰,同體積/重量的磷酸鋰鐵能量密度較低
2.在低溫環境下,放電能力及可用容量均明顯下降
3.品質不佳的電池,串聯組合使用一段時間後,電池單體電壓一致性差異會加大
鈦酸鋰
鈦酸鋰電池是把原本石墨負極材料用鈦酸鋰取代,並與錳酸鋰、三元材料或磷酸鐵鋰等正極所組成的二次鋰離子電池。鈦酸鋰本身不能提供鋰源,只能與含鋰的材料搭配使用,雖然也有鈦酸鋰正極材料,金屬鋰/鋰合金負極材料的組成方式,但普遍所稱呼的鈦酸鋰電池是指採用鈦酸鋰負極材料的二次鋰離子電池
石墨材料在充放電過程中鋰離子會反覆嵌入/脫嵌,使體積發生變化及材料變形導致整體循環性能變差。鈦酸鋰在充放電中鋰離子嵌入/脫嵌不會影響其材料的結構,所以鈦酸鋰被稱為”零應變材料”。這種”零應變”性質避免充放電過程導致材料結構發生變化,可提高電池的循環性能,減少容量衰減並延長使用壽命。與三元鋰/磷酸鋰鐵電池相比,鈦酸鋰電池在循環壽命的表現有明顯優勢
石墨負極會在與電解質/液接觸的介面上形成一層SEI膜(Solid Electrolyte Interface,固體電解質介面膜),造成電池首次充放電效率較低,消耗較多鋰離子導致不可逆容量較大,長期循環使用容易形成鋰枝晶造成電池內部短路影響使用安全。與石墨負極材料相比,鈦酸鋰不容易產生SEI膜,表面也難以生成鋰枝晶,可避免電池內部短路影響使用安全
特性:
1.標稱電壓:2.3V/2.4V(採用錳酸鋰正極時)
2.正極材料:常見為鈷酸鋰或錳酸鋰,也可以用三元鋰/磷酸鋰鐵等
3.負極材料:鈦酸鋰(LTO)
優點:
1.安全穩定性好,可承受劇烈撞擊、物理穿刺/擠壓、輸出短路、過充,而不起火或爆炸
2.鈦酸鋰具有較高的鋰離子化學擴散係數,功率密度高,可承受大倍率充放電
3.循環次數最多,壽命長
4.耐溫度範圍廣(-50℃至+60℃),可在低溫及高溫環境下正常充放電
缺點:
1.相較三元鋰/磷酸鋰鐵電池,同體積/重量的鈦酸鋰電池能量密度是最低的
2.負極材料製造需要金屬鈦,原料及生產成本高,也十分要求製造技術水準,導致鈦酸鋰電池單價高
3.鈦酸鋰電池因負極不容易產生SEI膜,鈦酸鋰會催化電解液分解產生氣體,產生脹氣問題,導致性能下降,壽命縮短及影響安全性,需要從材料(電解液)、設計(鈦酸鋰表面包覆奈米碳)及製造(減少材料雜質,控制製造環境濕度)上改進以有效抑制脹氣
4.品質不佳的鈦酸鋰電池一致性存在差異,隨著充放電次數的增加電池一致性差異會逐漸增大
無論何種二次鋰電池單體,當組成電池組(Battery Pack)時,必須要有穩固且同時考量到電池散熱的阻燃式固定結構(可避免電池承受震動衝擊受損或是過度擁擠造成散熱不良),電池單體之間以及正負輸出端牢固且低阻抗的連接方式(可避免造成大電流傳輸阻抗及接觸不良產生火花),電池組透過內建BMS(電池管理系統)/BMU(電池管理單元)/VTM(電壓溫度監控)來針對串並聯組合的複數單體進行單體電壓、電池組電壓、電池組電流、電池組溫度進行管理及監控,避免因電壓/電流/溫度異常而導致使用上的風險
並聯 電流 變 大 在 COMPOTECHAsia電子與電腦 - 陸克文化 Facebook 八卦
#電源管理 #同步降壓開關穩壓器 #雙相同步降壓從屬控制器 #並聯多相電源軌 #多相PolyPhase #圖形化使用者介面GUI
【並聯多相電源軌,允許系統設計按需增加電源級】
基於 I2C 的 PMBus 相容序列介面,可透過基於 PC 以及具圖形化使用者介面來配置、監視、控制和擴展功能,然後在內建 EEPROM 中儲存最佳生產設置將能提高電源設計效率;因為功能和優化設置 (包括補償) 都可透過軟體更改,無需更改電路板。採用定頻、電流模式架構的雙通道同步降壓開關穩壓器,能提供準確的輸入/輸出電流檢測和可編程迴路補償,非常適合需要通用電源系統設計、控制、監視、設定和高精度的工業應用。
最新電源管理系統要求更大的功率和更強的控制能力,但是必須放進日益縮小的電路板空間中。「並聯多相電源軌」是滿足大功率要求的最佳解決方案,因為它可實現高功率密度和高效率擴展;此類元件在多個降壓穩壓器之間支援多達 6 相的準確多相 (PolyPhase) 均流,允許系統設計按需增加電源級。此外,搭配雙相同步降壓從屬控制器,不需要額外 I2C 位址,降壓開關穩壓器就可支援所有編程設計和故障保護功能。
用多個「降壓開關穩壓器+從屬控制器」配置一個多相軌時,用戶只需均分連至該軌的所有通道之 SYNC、ITH、SHARE_CLK、FAULTn、PGOODn 和 ALERT 針腳即可。所有通道的相對相位關係應該設定為間隔相等,如此的相位交錯可產生最低的峰值輸入電流和最低的輸出電壓漣波,並降低對輸入/輸出電容的要求。系統設計者常須對電源系統分段,以滿足功能和電路板空間要求;上述配對方式可透過多相軌分離電源和控制元件以簡化分段工作,便於置入可用空間中。
分段還可在 PCB 上擴散電源系統產生的熱量,全面簡化熱量提取並減少發熱區。另一方面,可編程迴路補償功能,無需改變任何外部組件就能確保環路穩定性和優化控制器的瞬態回應,再也不必為實現理想補償而辛苦地焊上、焊下大量組件;一旦確定電壓和電流範圍,改變輸出電壓或電流限制並不會影響迴路增益。控制迴路可快速、輕鬆實現精細調節,無論最後一刻元件如何變更,設計者都能即時去掉不必要的輸出電容以達到最高系統性能、節省電路板空間並降低成本。
延伸閱讀:
《高壓數位電源系統管理的發展》
http://compotechasia.com/a/ji___yong/2016/1226/34362.html
(點擊內文標題即可閱讀全文)
#凌力爾特Linear #LTC3886 #LTC3870 #LTpowerPlay #Linduino One
〔本文將於發佈次日下午轉載至 LinkedIn、Twitter 和 Google+ 公司官方專頁,歡迎關注〕:
https://www.linkedin.com/company/compotechasia
https://twitter.com/lookCOMPOTECH
https://goo.gl/YU0rHY
並聯 電流 變 大 在 COMPOTECHAsia電子與電腦 - 陸克文化 Facebook 八卦
#嵌入式系統 #電源設計 #汽車電子 #輕混電動車MHEV
【48V 成 MHEV 主流功率架構】
輕混電動車 (MHEV) 包含一個連接到車輛變速器系統的 48V 電機驅動系統,為減少溫室氣體排放,輕混電動車中的內燃機 (ICE) 會在車輛滑行時關閉,同時該 48V 電機系統會為 48V 電池充電,以便為車輛供電。對於汽車動力總成應用,典型 48V 電機驅動系統需要 10~30kW 的電功率。傳統的 12V 電池系統無法滿足該功率水準,因此必須採用 48V 架構來支持大功率電機驅動。
48V 電機驅動器控制外部金屬——氧化物半導體場效應電晶體 (MOSFET),以使電機旋轉。這些外部 MOSFET 必須支持 600A 以上的電流才能實現 30kW 的功率目標。有效減小 MOSFET 的 RDS(on) 可減少熱耗散和導通損耗,在某些情況下,每個通道中並聯多個 MOSFET 有助於分散熱量。設計人員還需要優化由開關損耗引起的功率耗散,以使整個解決方案符合汽車電磁相容性 (EMC) 規範。
延伸閱讀:
《如何優化 48V 輕混電動車 (MHEV) 的電機驅動器設計》
http://www.compotechasia.com/a/tech_application/2021/0322/47419.html
#德州儀器TI #DRV3255-Q1