2020人工智慧的預測~
本文來自量子位微信公眾號 QbitAI
…………………………………………………………
吳恩達邀請9位AI大牛暢想2020:李開復看好醫療教育,LeCun強調自監督學習
2020,AI的研究會有哪些突破?
2020,AI的應用又會有什麼變化?
吳恩達DeepLearning.ai旗下的THE BATCH刊物,分享了包括Yann LeCun、李開復、周志華、還有他們的老闆吳恩達在內的10位AI大佬的新年寄語,以及對AI在2020年能有什麼突破的“新年願望”。
一起來看看吧~
▌吳恩達:保持學習和好奇心
在這份「新年寄語篇」的開頭,吳恩達作為發起人開場,總體是一些關於學習新知識的碎碎念。
吳恩達說,他每年冬天的假期都會圍繞一個新的主題進行學習。
比如10年前的那個冬天,他的學習主題是教育學,雖然當時他拖著十分沉重的書箱在機場趕路,但對教育學的研究的確為後來線上學習平臺Coursera的成立起到了幫助。
而去年,當時他的寶貝女兒Nova還在母親腹中,吳恩達就在冬天讀了很多育兒書籍。
而這個冬天,吳恩達說他在研究續命——包括遺傳學、還有誇克什麼的在內的新興科學,還實地探訪去拜見了自己101歲的爺爺,爺爺用親身經歷告訴他:
長壽的秘方,就是保持好奇心。
照這個規律,吳恩達覺得自己的關注者裡會有不少人能在101歲之後依然活蹦亂跳的。
最後,吳恩達祝大家過一個充滿好奇心、學到新東西、有愛的2020年。
▌李開復:AI將在更多行業落地
李開復的新年寄語主題,是AI無處不在。他說:
人工智慧已經從發現的時代到了落地的時代。在我們主要在中國的投資組合中,我們看到了在銀行、金融、運輸、物流、超市、飯店、倉庫、工廠、學校和藥物研發中使用人工智慧和自動化技術的應用。
但是,從整體經濟的角度來看,只有一小部分企業開始使用AI,這表明AI還有巨大的增長空間。
我相信,在人類技術進步的歷史上,AI將與電力同等重要。在未來的一二十年中,人工智慧將滲透到我們的生活和工作中,從而提供更高的效率和更智慧的體驗。現在正是企業、機構和政府充分擁抱AI並推動社會前進的時機。
我對AI在醫療和教育上的影響非常興奮。這兩個行業已經為AI的部署做好了準備。
我們投資了一家使用AI和大數據優化供應鏈的公司,從而緩解了超過1.5億中國農村人口的藥品短缺情況。我們也在投資用深度學習來生成化合物的藥物研發公司,以將藥物發現時間縮短三到四倍。
在教育方面,我們看到一些公司正在用AI改善學生的英語發音,幫助學生提升成績,用個性化和遊戲化的方式説明學生學習數學。這將使教師從日常工作中解放出來,並使他們能夠花時間為新興一代的學生做更多鼓勵性的工作。
我希望看到更多明智的企業家和公司在2020年及以後的幾年中開始使用AI來幫助他們獲得更大的好處。
▌LeCun:自監督學習帶來AI革命
深度學習三巨頭之一、圖靈獎得主Yann LeCun的新年寄語主題,是Learning From Observation。
讓人忍不住把它翻譯成“格物致知”。
“格”的是開車這件小事。LeCun提到,人類學開車只要幾十個小時,但是模仿學習演算法需要學幾十萬個小時,強化學習演算法甚至需要學幾百萬個小時,這裡面一定有什麼問題。
人類可以高效學習,是因為我們人在腦海裡建立了世界的模型。嬰兒很難和世界互動,但是在剛出生的幾個月裡,他們通過觀察吸收了大量關於這個世界的背景知識。顯然,大腦的很大一部分被用在了理解世界的結構,並預測一些無法直接觀察到的事物,比如未來才會出現的東西、或者被隱藏的事物。
因此,AI的前進方向,就是自監督學習(self-supervised learning),它和監督學習類似,但是並不會訓練系統去把資料分類,而是我們隱藏一些部分,讓後讓機器預測丟失的部分,比如把視頻的一些幀抹掉,然後訓練機器根據剩餘的幀來填補被抹掉的部分。
最近,這種方法在NLP方面非常成功。諸如BERT、RoBERTa、XLNet、XLM之類的模型以自監督的方式進行訓練來預測文本中缺少的單詞,它們在所有主要的自然語言基準測試中都有記錄。
希望在2020年,自監督學習能夠用在視頻和圖像上。它會在視頻這類高維連續資料上創造類似的革命嗎?
其中一項嚴峻的挑戰是應對不確定性。像BERT這樣的模型無法判斷句子中丟失的單詞是“貓”還是“狗”,但是它們可以產生概率分佈向量。對於圖像或視頻幀,我們沒有一個好的概率分佈模型。但是最近的研究非常接近,或許我們很快就會發現這樣一個模型。
這樣,我們就能用很少的視頻訓練樣本,來實現非常好的性能預測、動作預測,而這在以前是不可能的。
當這個想法實現的時候,2020年就會是AI領域非常激動人心的時刻。
▌周志華:方法創新,方針明確
南京大學周志華教授對2020年有三個希望:
1、希望能夠出現深度神經網路以外的高級機器學習技術。神經網路已經被許多研究人員、工程師和從業人員研究並應用了很長時間,其他機器學習技術為創新提供了相對未開發的空間。
2、希望AI可以涉足更多領域,為人們的日常生活帶來更多積極的變化。
3、希望研究人員、工程師和從業者們對於如何採取措施防止AI技術的錯誤開發和濫用進行更多的思考和討論。
▌Anima Anandkumar:模擬的力量
Anima Anandkumar是英偉達機器學習的總監,也是加州理工的電腦教授。
Anandkumar教授提到,在模擬環境學習中訓練演算法會讓網路更為強大,並且能類比各種複雜的情況,在一些情況下可以解決研究人員資料不夠的問題。
她所在的加州理工已經用物理模型來類比真實資料,用深度學習進行地震預測的研究;英偉達也推出了模擬平臺Isaac。
她希望,2020年AI科學家們能認識到在類比環境中進行訓練的價值,並在新的一年產生更為重大的AI進步。
▌Oren Etzioni:工具創造平等
Oren Etzioni是艾倫人工智慧研究所的首席執行官、華盛頓大學電腦教授、Madrona資本合夥人。
他認為,AI界花了很多時間討論演算法的公平和透明性,但在應用上,AI還可以為社會提供更多幫助,比如為行動不便的人提供無障礙技術,解決教育、流浪者、人口販賣的問題,AI能對人們的生活品質產生巨大的積極影響,但現在AI界對此的研究和探討只浮於表面。
因此,他希望2020年AI界能用切實的手段讓這些處於不利地位的人受益,讓世界更公平。
▌Chelsea Finn:泛化的機器人
Chelsea Finn是斯坦福電腦科學與電氣工程助理教授。
她認為,目前的許多AI技術都能在圍棋等特定任務上取得非常好的成績,但在泛化方面做得還不夠,無法用一個機器人來完成多個任務。
比如,識別ImageNet上的圖片需要一個模型,但如果機器人需要與環境交互,那為每個任務都創造一個ImageNet那麼大的資料集是不切實際的。
因此,她也在進行更多賦予機器人泛化能力的研究。如果強化學習的臨界品質發展和泛化有所突破,會是非常令人振奮的事情。如果能應對這些挑戰,機器人會比現在的更加智慧,而不僅僅是停留在實驗室裡。
▌David Patterson:快速訓練與推理
David Patterso是加州大學伯克利分校的電腦科學教授,RISC-V國際開源實驗室負責人,也是ACM和IEEE的Fellow。
他說,過去一年,阿裡巴巴、 Graphcore和英特爾等公司都在研發專門的人工智慧處理器,而這些晶片將慢慢進入研究實驗室和資料中心。
他認為,投資數十億美元打造新穎的人工智慧硬體將在2020年初見成效。
並希望人工智慧社區能接受其中最好的晶片,來推動這個領域朝著更好的模型和更有價值的應用方向發展。
▌Dawn Song:要對資料負責
Dawn Song是安全領域的頂尖學者之一,1996年本科畢業於清華大學,現在是加州大學伯克利分校(UC Berkeley)電腦科學和電子工程教授,也是Oasis Labs 首席執行官和聯合創始人。
她認為,人們對敏感性資料的收集正在迅速增加,幾乎涵蓋了人們生活的方方面面。但使用者幾乎無法控制他們生成的資料如何被使用。與此同時,企業和研究人員在利用資料方面面臨著諸多挑戰。
在她看來,這種資料收集方式將個人和企業置於危險之中,她希望2020年應該是為負責任的資料經濟打下基礎的一年。
這需要創造新的技術、法規和商業模式。Dawn Song認為,2020年在在機器學習方面仍然存在更大的挑戰,要打造可擴展的系統來為實際部署大型、異構資料集服務,聯邦學習的進一步研究和部署對於某些用例也很重要等等。
▌Richard Socher:資訊海洋已經沸騰
Richard Socher博士畢業于斯坦福大學電腦系。2016年,自己創辦的公司被Salesforce收購後,加入Salesforce,現在是Salesforce的首席科學家。
他認為,如何處理鋪天蓋地的事實、意見和觀點仍然是一個挑戰。
比如,在你沒有讀過一個冗長的文檔之前,你很難知道你會在裡面找到什麼資訊。而且,想要知道某個特定的陳述是否正確也非常困難。
在他看來,自動提取摘要可以解決這些問題,2020年,這一技術將會迎來重大發展,改變我們消費資訊的方式。
不僅能説明人們應對不斷湧現的新資訊,而且還能讓人們進一步擁抱人工智慧的巨大潛力,創造一個更美好的世界。
原文傳送門:
https://blog.deeplearning.ai/blog/the-batch-happy-new-year-hopes-for-ai-in-2020-yann-lecun-kai-fu-lee-anima-anandkumar-richard-socher
同時也有10000部Youtube影片,追蹤數超過62萬的網紅Bryan Wee,也在其Youtube影片中提到,...
「imagenet資料集」的推薦目錄:
- 關於imagenet資料集 在 李開復 Kai-Fu Lee Facebook
- 關於imagenet資料集 在 李開復 Kai-Fu Lee Facebook
- 關於imagenet資料集 在 軟體開發學習資訊分享 Facebook
- 關於imagenet資料集 在 Bryan Wee Youtube
- 關於imagenet資料集 在 Travel Thirsty Youtube
- 關於imagenet資料集 在 スキマスイッチ - 「全力少年」Music Video : SUKIMASWITCH / ZENRYOKU SHOUNEN Music Video Youtube
- 關於imagenet資料集 在 (28) ML-1215-1: Classify ImageNet classes_with_ResNet50 的評價
imagenet資料集 在 李開復 Kai-Fu Lee Facebook 八卦
創新工場“AI蒙汗藥”入選NeurIPS 2019,3年VC+AI佈局進入科研收穫季
本文來自量子位微信公眾號
……………………………………………………………………
NeurIPS 2019放榜,創新工場AI工程院論文在列。
名為“Learning to Confuse: Generating Training Time Adversarial Data with Auto-Encoder”。
一作是創新工場南京國際AI研究院執行院長馮霽,二作是創新工場南京國際人工智慧研究院研究員蔡其志,南京大學AI大牛周志華教授也在作者列。
論文提出了一種高效生成對抗訓練樣本的方法DeepConfuse,通過微弱擾動資料庫的方式,徹底破壞對應的學習系統的性能,達到“資料下毒”的目的。
創新工場介紹稱,這一研究就並不單單是為了揭示類似的AI入侵或攻擊技術對系統安全的威脅,還能協助針對性地制定防範“AI駭客”的完善方案,推動AI安全攻防領域的發展。
NeurIPS,全稱神經資訊處理系統大會(Conference and Workshop on Neural Information Processing Systems),自1987年誕生至今已有32年的歷史,一直以來備受學術界和產業界的高度關注,是AI學術領域的“華山論劍”。
作為AI領域頂會,NeurIPS也是最火爆的那個,去年會議門票在數分鐘內被搶光,而且在論文的投稿錄取上,競爭同樣激烈。
今年,NeurIPS會議的論文投稿量再創新高,共收到6743篇投稿,最終錄取1428篇論文,錄取率為21.2%。
▌“資料下毒”論文入選頂會NeurIPS
那這次創新工場AI工程院這篇入選論文,核心議題是什麼?
我們先拆解說說。
近年來,機器學習熱度不斷攀升,並逐漸在不同應用領域解決各式各樣的問題。不過,卻很少有人意識到,其實機器學習本身也很容易受到攻擊,模型並非想像中堅不可摧。
例如,在訓練(學習階段)或是預測(推理階段)這兩個過程中,機器學習模型就都有可能被對手攻擊,而攻擊的手段也是多種多樣。
創新工場AI工程院為此專門成立了AI安全實驗室,針對人工智慧系統的安全性進行了深入對評估和研究。
在被NeurIPS收錄的論文中,核心貢獻就是提出了高效生成對抗訓練資料的最先進方法之一——DeepConfuse。
▌給數據下毒
通過劫持神經網路的訓練過程,教會雜訊生成器為訓練樣本添加一個有界的擾動,使得該訓練樣本訓練得到的機器學習模型在面對測試樣本時的泛化能力盡可能地差,非常巧妙地實現了“資料下毒”。
顧名思義,“資料下毒”即讓訓練資料“中毒”,具體的攻擊策略是通過干擾模型的訓練過程,對其完整性造成影響,進而讓模型的後續預測過程出現偏差。
“資料下毒”與常見的“對抗樣本攻擊”是不同的攻擊手段,存在於不同的威脅場景:前者通過修改訓練資料讓模型“中毒”,後者通過修改待測試的樣本讓模型“受騙”。
舉例來說,假如一家從事機器人視覺技術開發的公司希望訓練機器人識別現實場景中的器物、人員、車輛等,卻不慎被入侵者利用論文中提及的方法篡改了訓練資料。
研發人員在目視檢查訓練資料時,通常不會感知到異常(因為使資料“中毒”的噪音資料在圖像層面很難被肉眼識別),訓練過程也一如既往地順利。
但這時訓練出來的深度學習模型在泛化能力上會大幅退化,用這樣的模型驅動的機器人在真實場景中會徹底“懵圈”,陷入什麼也認不出的尷尬境地。
更有甚者,攻擊者還可以精心調整“下毒”時所用的噪音資料,使得訓練出來的機器人視覺模型“故意認錯”某些東西,比如將障礙認成是通路,或將危險場景標記成安全場景等。
為了達成這一目的,這篇論文設計了一種可以生成對抗雜訊的自編碼器神經網路DeepConfuse。
通過觀察一個假想分類器的訓練過程更新自己的權重,產生“有毒性”的雜訊,從而為“受害的”分類器帶來最低下的泛化效率,而這個過程可以被歸結為一個具有非線性等式約束的非凸優化問題。
▌下毒無痕,毒性不小
從實驗資料可以發現,在MNIST、CIFAR-10以及縮減版的IMAGENET這些不同資料集上,使用“未被下毒”的訓練資料集和“中毒”的訓練資料集所訓練的系統模型在分類精度上存在較大的差異,效果非常可觀。
與此同時,從實驗結果來看,該方法生成的對抗雜訊具有通用性,即便是在隨機森林和支援向量機這些非神經網路上也有較好表現。
其中,藍色為使用“未被下毒”的訓練資料訓練出的模型在泛化能力上的測試表現,橙色為使用“中毒”訓練資料訓練出的模型的在泛化能力上的測試表現。
在CIFAR和IMAGENET資料集上的表現也具有相似效果,證明該方法所產生的對抗訓練樣本在不同的網路結構上具有很高的遷移能力。
此外,論文中提出的方法還能有效擴展至針對特定標籤的情形下,即攻擊者希望通過一些預先指定的規則使模型分類錯誤,例如將“貓”錯誤分類成“狗”,讓模型按照攻擊者計畫,定向發生錯誤。
例如,下圖為MINIST資料集上,不同場景下測試集上混淆矩陣的表現,分別為乾淨訓練資料集、無特定標籤的訓練資料集、以及有特定標籤的訓練資料集。
實驗結果有力證明,為有特定標籤的訓練資料集做相應設置的有效性,未來有機會通過修改設置以實現更多特定的任務。
對資料“下毒”技術的研究並不單單是為了揭示類似的AI入侵或攻擊技術對系統安全的威脅,更重要的是,只有深入研究相關的入侵或攻擊技術,才能有針對性地制定防範“AI駭客”的完善方案。
隨著AI演算法、AI系統在國計民生相關的領域逐漸得到普及與推廣,科研人員必須透徹地掌握AI安全攻防的前沿技術,並有針對性地為自動駕駛、AI輔助醫療、AI輔助投資等涉及生命安全、財富安全的領域研發最有效的防護手段。
▌還關注聯邦學習
除了安全問題之外,人工智慧應用的資料隱私問題,也是創新工場AI安全實驗室重點關注的議題之一。
近年來,隨著人工智慧技術的高速發展,社會各界對隱私保護及資料安全的需求加強,聯邦學習技術應運而生,並開始越來越多地受到學術界和工業界的關注。
具體而言,聯邦學習系統是一個分散式的具有多個參與者的機器學習框架,每一個聯邦學習的參與者不需要與其餘幾方共用自己的訓練資料,但仍然能利用其餘幾方參與者提供的資訊更好的訓練聯合模型。
換言之,各方可以在在不共用資料的情況下,共用資料產生的知識,達到共贏。
創新工場AI工程院也十分看好聯邦學習技術的巨大應用潛力。
今年3月,“Learning to Confuse: Generating Training Time Adversarial Data with Auto-Encoder”論文的作者、創新工場南京國際人工智慧研究院執行院長馮霽代表創新工場當選為IEEE聯邦學習標準制定委員會副主席,著手推進制定AI協同及大資料安全領域首個國際標準。
創新工場也將成為聯邦學習這一技術“立法”的直接參與者。
▌創新工場AI工程院科研成績單
創新工場憑藉獨特的VC+AI(風險投資與AI研發相結合)的架構,致力於扮演前沿科研與AI商業化之間的橋樑角色。
創新工場2019年廣泛開展科研合作,與其他國際科研機構合作的論文,入選多項國際頂級會議,除上述介紹的“資料下毒”論文入選NeurlPS之外,還有8篇收錄至五大學術頂會,涉及影像處理、自動駕駛、自然語言處理、金融AI和區塊鏈等方向。
┃兩篇論文入選ICCV
Disentangling Propagation and Generation for Video Prediction
https://arxiv.org/abs/1812.00452
這篇論文的主要工作圍繞一個視頻預測的任務展開,即在一個視頻中,給定前幾幀的圖片預測接下來的一幀或多幀的圖片。
Joint Monocular 3D Vehicle Detection and Tracking
https://arxiv.org/abs/1811.10742
這篇論文提出了一種全新的線上三維車輛檢測與跟蹤的聯合框架,不僅能隨著時間關聯車輛的檢測結果,同時可以利用單目攝像機獲取的二維移動資訊估計三維的車輛資訊。
┃一篇論文入選IROS
Monocular Plan View Networks for Autonomous Driving
http://arxiv.org/abs/1905.06937
針對端到端的控制學習問題提出了一個對當前觀察的視角轉換,將其稱之為規劃視角,它把將當前的觀察視角轉化至一個鳥瞰視角。具體的,在自動駕駛的問題下,在第一人稱視角中檢測行人和車輛並將其投影至一個俯瞰視角。
┃三篇論文入選EMNLP
Multiplex Word Embeddings for Selectional Preference Acquisition
提出了一種multiplex詞向量模型。在該模型中,對於每個詞而言,其向量包含兩部分,主向量和關係向量,其中主向量代表總體語義,關係向量用於表達這個詞在不同關係上的特徵,每個詞的最終向量由這兩種向量融合得到。
What You See is What You Get: Visual Pronoun Coreference Resolution in Dialogues
https://assert.pub/papers/1909.00421
提出了一個新模型(VisCoref)及一個配套資料集(VisPro),用以研究如何將代詞指代與視覺資訊進行整合。
Reading Like HER: Human Reading Inspired Extractive Summarization
人類通過閱讀進行文本語義的摘要總結大體上可以分為兩個階段:1)通過粗略地閱讀獲取文本的概要資訊,2)進而進行細緻的閱讀選取關鍵句子形成摘要。
本文提出一種新的抽取式摘要方法來模擬以上兩個階段,該方法將文檔抽取式摘要形式化為一個帶有上下文的多臂老虎機問題,並採用策略梯度方法來求解。
┃一篇論文入選IEEE TVCG
sPortfolio: Stratified Visual Analysis of Stock Portfolios
https://www.ncbi.nlm.nih.gov/pubmed/31443006
主要是對於金融市場中的投資組合和多因數模型進行可視分析的研究。通過三個方面的分析任務來幫助投資者進行日常分析並升決策準確性。
並提出了一個全新的視覺化分析系統sPortfolio,它允許使用者根據持倉,因數和歷史策略來觀察投資組合的市場。sPortfolio提供了四個良好協調的視圖。
┃一篇論文入選NSDI
Monoxide: Scale Out Blockchain with Asynchronized Consensus Zones
https://www.usenix.org/system/files/nsdi19-wang-jiaping.pdf
提出了一種名為非同步共識組 Monoxide 的區塊鏈擴容方案,可以在由 4.8 萬個全球節點組成的測試環境中,實現比比特幣網路高出 1000 倍的每秒交易處理量,以及 2000 倍的狀態記憶體容量,有望打破“不可能三角”這個長期困擾區塊鏈性能的瓶頸。
▌獨特的“科研助推商業”思路
國內VC,發表論文都很少見,為什麼創新工場如此做?
這背後在於其“VC+AI”模式。
最獨特之處在于,創新工場的AI工程院可以通過廣泛的科研合作以及自身的科研團隊,密切跟蹤前沿科研領域裡最有可能轉變為未來商業價值的科研方向。
這種“科研助推商業”的思路力圖儘早發現有未來商業價值的學術研究,然後在保護各方智慧財產權和商業利益的前提下積極與相關科研方開展合作。
同時,由AI工程院的產品研發團隊嘗試該項技術在不同商業場景裡可能的產品方向、研發產品原型,並由商務拓展團隊推動產品在真實商業領域的落地測試,繼而可以為創新工場的風險投資團隊帶來早期識別、投資高價值賽道的寶貴機會。
“科研助推商業”並不是簡單地尋找有前景的科研專案,而是將技術跟蹤、人才跟蹤、實驗室合作、智慧財產權合作、技術轉化、原型產品快速反覆運算、商務拓展、財務投資等多維度的工作整合在一個統一的資源體系內,用市場價值為導向,有計劃地銜接學術科研與商業實踐。
以AI為代表的高新技術目前正進入商業落地優先的深入發展期,產業大環境亟需前沿科研技術與實際商業場景的有機結合。
創新工場憑藉在風險投資領域積累的豐富經驗,以及在創辦AI工程院的過程中積累的技術人才優勢,特別適合扮演科研與商業化之間的橋樑角色。
於是,創新工場AI工程院也就順勢而生。
創新工場人工智慧工程院成立於2016年9月,以“科研+工程實驗室”模式,規劃研發方向,組建研發團隊。
目前已經設有醫療AI、機器人、機器學習理論、計算金融、電腦感知等面向前沿科技與應用方向的研發實驗室,還先後設立了創新工場南京國際人工智慧研究院、創新工場大灣區人工智慧研究院。
目標是培養人工智慧高端科研與工程人才,研發以機器學習為核心的前沿人工智慧技術,並同各行業領域相結合,為行業場景提供一流的產品和解決方案。
而且, 創新工場還與國內外著名的科研機構廣泛開展科研合作。
例如,今年3月20日,香港科技大學和創新工場宣佈成立電腦感知與智慧控制聯合實驗室(Computer Perception and Intelligent Control Lab)。
此外,創新工場也積極參與了國際相關的技術標準制定工作。例如,今年8月,第28屆國際人工智慧聯合會議(IJCAI)在中國澳門隆重舉辦,期間召開了IEEE P3652.1(聯邦學習基礎架構與應用)標準工作組第三次會議。
IEEE聯邦學習標準由微眾銀行發起,創新工場等數十家國際和國內科技公司參與,是國際上首個針對人工智慧協同技術框架訂立標準的專案。
創新工場表示,自身的科研團隊將深度參與到聯邦學習標準的制定過程中,希望為AI技術在真實場景下的安全性、可用性以及保護資料安全、保護使用者隱私貢獻自己的力量。
imagenet資料集 在 軟體開發學習資訊分享 Facebook 八卦
NT530 特價中
從這 14 小時的課程,你會學到
✅ 通過完成 26 個進階的電腦視覺專案,包括情感,年齡和性別分類,倫敦地下標誌檢測,猴子品種,鮮花,水果,辛普森人物,還有更多
✅ 學習進階的深度學習電腦視覺技術,如遷移學習( Transfer Learning )和使用預先訓練的模型(VGG,MobileNet,InceptionV3,ResNet50)在 ImageNet 和重新建立流行的 CNNs,例如 AlexNet,LeNet,VGG 和 U-Net
✅ 理解神經網路,卷積神經網路,R-CNNs,SSDs,YOLO & GANs 如何運作與我容易追循的解釋
✅ 熟悉其它框架(PyTorch、 Caffe、 MXNET、 CV api)和雲端 GPU,並對電腦視覺世界有一個概述
✅ 學習如何使用 Python 程式庫 Keras 建立複雜的深度學習網路(使用 Tensorflow 後端)
✅ 學習如何對臉部年齡做神經風格遷移( Neural Style Transfer ),DeepDream 和使用 GANs ,可到 60 歲以上
✅ 學習如何建立,標註,註釋,訓練您自己的影像資料集,完美的專案適合大學和新創公司
✅ 附有近4小時的視訊免費選修課程學習如何使用 OpenCV
✅ 學習如何使用 CNNs 例如 U-Net 來執行影像切割,這在醫學成像應用中是非常有用的
✅ 學習如何使用 TensorFlow 的物件檢測 API 和在 YOLO 中建立客製化的物件偵測器
✅ 使用 VGGFace 學習臉部辨識
https://softnshare.com/master-deep-learning-computer-visiontm-cnn-ssd-yolo-gans/
imagenet資料集 在 (28) ML-1215-1: Classify ImageNet classes_with_ResNet50 的八卦
... <看更多>