ในวิชา "วิทยาการคำนวณ" ระดับชั้น ม. 5
ได้ดึงวิชา data science (วิทยาศาสตร์ข้อมูล)
มาปูพื้นฐานให้เด็กๆ ได้เรียนกันแล้ว นับว่าเป็นโชคดี
เพราะวิชาพวกนี้เป็นของสูง กว่าจะสัมผัสก็คงตอนป.ตรี โท เอก
...Continue ReadingIn the subject of ′′ Calculation Theology ′′ class. 5
Pulled data science (data science)
Let's master the foundation for kids to learn. It's considered lucky.
Because these subjects are high to touch. It's probably in the middle of the year. Tri To Aek
Which I will review the content to read roughly. The content is divided into 4 chapters.
.
👉 ++++ Chapter 1-Information is valuable +++++
.
Data science in the textbook. Used by Thai name as ′′ Information Science ′′
This chapter will mention Big Data or big data with lots of valuable information.
And so much role in this 4.0 s both public and private sector.
.
If you can't imagine when you played Google search network, you'll find a lot of information that you can use in our business. This is why data science plays a very important role.
.
It's not surprising that it makes the Data Scientist s' career (British name data scientist) play the most important role and charming and interesting profession of the 21th century.
.
Data science, if in the book, he defines it
′′ Study of the process, method or technique to process enormous amounts of data to process to obtain knowledge, understand phenomena, or interpret prediction or prediction, find out patterns or trends from information.
and can be analysed to advise the right choice or take decision for maximum benefit
.
For Data science work, he will have the following steps.
- Questioning my own interest.
- Collect information.
- Data Survey
- Data Analysis (analyze the data)
- Communication and Results Visualization (Communicate and visualize the results)
.
🤔 Also he talks about design thinking... but what is it?
Must say the job of a data scientist
It doesn't end just taking the data we analyzed.
Let's show people how to understand.
.
The application design process is still required.
To use data from our analytics
The word design thinking is the idea. The more good designer it is.
Which Data Scientists Should Have To Design Final Applications
Will meet user demand
.
👉 ++++ Chapter 2 Collection and Exploration +++++
.
This chapter is just going to base.
2.1 Collection of data
In this chapter, I will talk about information that is a virtual thing.
We need to use this internet.
2.2 Data preparation (data preparation)
Content will be available.
- Data Cleaning (data cleansing)
- Data Transformation (data transformation)
In the university. 5 is not much but if in college level, you will find advanced technique like PCA.
- Info Link (combining data)
2.3 Data Exploration (data exploration)
Speaking of using graphs, let's explore the information e
Histogram graph. Box plot diagram (box plot). Distributed diagram (scatter plot)
With an example of programming, pulls out the plot to graph from csv (or xls) file.
2.4 Personal Information
For this topic, if a data scientist is implementing personal data, it must be kept secret.
.
Where the issues of personal information are now available. Personal Data Protection is Done
.
.
👉 ++++ Chapter 3 Data Analysis ++++
.
Divided into 2 parts:
.
3.1 descriptive analysis (descriptive analytics)
Analyzing using the numbers we've studied since
- Proportion or percentage
- Medium measurement of data, average, popular base.
Correlation (Correlation) relationship with programming is easy.
.
.
3.2 predictive analysis (predictive analytics)
.
- numeric prediction is discussed. (numeric prediction)
- Speaking of technique linear regression, a straight line equation that will predict future information.
Including sum of squared errors
Let's see if the straight line graph is fit with the information. (with programming samples)
- Finally mentioned K-NN (K-Nearest Neighbors: K-NN) is the closest way to finding K-N-Neighborhood for classification (Category)
*** Note *****
linear regression กับ K-NN
This is also an algorithm. One of the machine learning (machine learning, one branch of AI)
Kids in the middle of the day, I get to study.
.
.
👉 +++ Chapter 4 Making information pictured and communicating with information +++
.
This chapter doesn't matter much. Think about the scientist after analyzing what data is done. The end is showing it to other people by doing data visualization. (Better summoning)
.
In contents, it's for example using a stick chart, line chart, circular chart, distribution plan.
.
The last thing I can't do is tell a story from information (data story telling) with a message. Be careful when you present information.
.
.
.
*** this note ***
😗 Program language which textbooks mentioned and for example.
It's also python and R language
.
For R language, many people may not be familiar.
The IT graduate may be more familiar with Python.
But anyone from the record line will surely be familiar.
Because R language is very popular in statistical line
And it can be used in data science. Easy and popular. Python
.
But if people from data science move to another line of AI
It's deep learning (deep learning)
Python will be popular with eating.
.
.
#########
😓 Ending. Even I wrote a review myself, I still feel that.
- The university. 5 is it going to be hard? Can a child imagine? What did she do?
- Or was it right that I packed this course into Big Data era?
You can comment.
.
But for sure, both parents and teachers are tired.
Because it's a new content. It's real.
Keep fighting. Thai kids 4.0
.
Note in the review section of the university's textbook. 4 There will be 3 chapters. Read at.
https://www.facebook.com/programmerthai/photos/a.1406027003020480/2403432436613260/?type=3&theater
.
++++++++++++++++++++
Before leaving, let's ask for publicity.
++++++++++++++++++++
Recommend the book ′′ Artificial Intelligence (AI) is not difficult ′′
It can be understood by the number. End of book 1 (Thai language content)
Best seller ranked
In the MEB computer book category.
.
The contents will describe Artificial Intelligence (A) in view of the number. The end.
Without a code of dizzy
With colorful illustrations to see, easy to read.
.
If you are interested, you can order.
👉 https://www.mebmarket.com/web/index.php?action=BookDetails&data=YToyOntzOjc6InVzZXJfaWQiO3M6NzoiMTcyNTQ4MyI7czo3OiJib29rX2lkIjtzOjY6IjEwODI0NiI7fQ&fbclid=IwAR11zxJea0OnJy5tbfIlSxo4UQmsemh_8TuBF0ddjJQzzliMFFoFz1AtTo4
.
Personal like the book. You can see this link.
👉 https://www.dropbox.com/s/fg8l38hc0k9b0md/chapter_example.pdf?dl=0
.
Sorry, paper book. I don't have it yet. Sorry.
.
✍ Written by Thai programmer thai progammerTranslated
同時也有2部Youtube影片,追蹤數超過7萬的網紅在地上滾的工程師 Nic,也在其Youtube影片中提到,硬核的知識也許不是每個工程師都能夠在職涯發展中完全運用到,但無論是本科系、轉職、自學成為工程師的朋友,都應該要知道,這些紮實的背景知識提早學習起來,在未來的日子裡,只有好沒有壞。 就透過本影片我的真實經驗分享,告訴你這些我在大學時期看似枯燥乏味的理論,其實就是程式設計內功,而日後沉睡已久的內功卻又...
graph algorithm 在 โปรแกรมเมอร์ไทย Thai programmer Facebook 八卦
"แอ็ดส์เคอร์ ไดก์สตรา" ได้ให้ คำคมที่ลึกซึ้งกินใจ #โปรแกรมเมอร์ ว่า
“If debugging is the process of removing software bugs ,then programming must be the process of putting them in.”
แปลเป็นไทยได้ว่า
“ถ้าการดีบักคือ กระบวนการเอาบั๊กซอฟแวร์ออกไปละก็ …
เมื่อนั้นการเขียนโปรแกรมต้องเป็น กระบวนการใส่บั๊กเข้าไปแน่ ๆ”
++++รู้ไว้ใช่ว่า ใส่บ่าแบกหาม++++
ประวัติ Edsger Dijkstra (แอ็ดส์เคอร์ ไดก์สตรา)
เขาเป็นนักวิทยาศาสตร์คอมพิวเตอร์ชาวดัชต์
ที่สร้างคุณานุประโยชน์ แก่วงการคอมอย่างมาก
เกิดเมื่อค.ศ. 1930 และเสียชีวิตด้วยโรคมะเร็งเมื่อ 6 ส.ค. 2002
รวมอายุได้ 72 ปี
เขาจบดอกเตอร์ทางคณิตศาสตร์และฟิสิกส์ ที่ University of Amsterdam เมื่อปี 1959
ปี 1972 ได้รับรางวัล "ACM Turing Award"
และปี 1984 ได้เป็นศาสตราจารย์ที่ Uninversity of Texas at Austin
ผลงานของเขา ที่คนเรียนสายคอมทุกคน ต้องรู้จักคือ
“Dijkstra’s algorithm”
ตำราเรียนอาจแปลว่า "ขั้นตอนวิธีของไดก์สตรา" (คุ้น ๆ ใช่มั๊ยละ)
มันเป็นวิธีแก้ปัญหาเรื่อง shortest path หรือก็คือหาระยะทางสั้นที่สุด จากจุดหนึ่งไปยังจุดใด ๆ ในกราฟ นั่นเอง
(ถ้าไม่รู้จักแสดงว่าโดดเรียน และทำข้อสอบไม่ได้นะ)
ผลงานดังอีกชิ้น ที่เราต้องเคยเรียนคือ
การแก้ปัญหาการกินอาหารของนักปราชญ์
หรือชื่อภาษาอังกฤษคือ "dining philosophers problem"
+++ส่วนผลงานดังด้านอื่น ๆ+++
-เป็นหัวหน้าทีมคิดค้นระบบ OS ที่เรียกว่า “THE” Multiprogramming System
-คิดค้นหลักการ Semaphore
-เป็นผู้เขียนบทความ “Go To Statement Considered Harmfull” จนปลุกกระแสต่อต้านคำสั่ง Goto ในยุคนั้น
-เขียนหนังสือ “A Discipline of Programming” ซึ่งรวบรวม Algorithms ที่ตัวเขาเองคิดค้น
-แต่งหนังสือร่วมกับ C. A. R. Hoare Ole-Johan Dah ชื่อหนังสือคือ “Structured Programming”
นอกจากนี้แล้ว เขายังเป็นผู้บุกเบิกศาสตร์ทางคอมหลายเรื่อง ยิ่งคนจบคอมมา ล้วนเคยเรียน หรือเคยอ่านผ่านตามาทั้งสิ้น ได้แก่
Distributed Computing, Compiler Writing, Heuristics, stream, Computer Hardware Design, Dining Philosopher, Software Configuration Management, Sorting Algorithms, Fast Fourier Transform, Deadlock, Concurrent Programming, Garbage Collection, Memory Design, AI: Pattern Matching, Graph Theory, Scope of Variables, Transaction และอื่นๆ อีกมากกว่า 1,000 บทความ
อ่านเพิ่ม -> http://www.patanasongsivilai.com/…/การเขียนโปรแกรม-คือการใ…/
graph algorithm 在 โปรแกรมเมอร์ไทย Thai programmer Facebook 八卦
🤓 หลายคนอาจเคยบ่น "เรียนเลขไปทำไม ไม่เห็นได้ใช้เลย"
อันนี้เป็นแค่ตัวอย่าง เพื่อให้รู้ว่าเลขที่เราเรียนตอนม.ปลาย
ไม่ควรทิ้งถ้าคิดจะเรียนคอมพิวเตอร์ ในระดับสูง
.
👉 1) สมการเชิงเส้น
เริ่มต้นจากสมการเส้นตรง ที่มีหน้าตาดังนี้ y=mx+c เรียกว่ารูปมาตรฐาน
- เมื่อ m เป็นความชัน
-ส่วน c เป็นจุดตัดแกน y
.
สมการเชิงเส้นเราจะได้เรียนในระดับ ม 4
พอในม.5 วิชา วิทยาการคำนวณ
ก็จะเห็นประโยชน์ของสมการเส้นตรงถูกนำไปใช้ในงาน data science (วิทยาการข้อมูล)
นำไปใช้วิเคราะห์ข้อมูลแบบ linear regression
.
กล่าวคือเมื่อเรามีข้อมูลย้อนหลังในอดีต
แล้วสามารถนำไปพล็อตลงบนกราฟแกน x กับ y
ผลปรากฏว่าข้อมูลมีความสัมพันธ์เป็นเส้นตรง
ในกรณีเราสามารถหาสมการเส้นตรงที่เหมาะสมสุด (optimize)
นำมาใช้พยากรณ์ข้อมูลล่วงหน้าในอนาคตได้
.
แต่ในกรณีที่ความสัมพันธ์ของข้อมูลพบว่าไม่ใช่เส้นตรง
เราสามารถใช้สมการที่ไม่ใช่เส้นตรง มาใช้พยากรณ์ข้อมูลก็ได้เช่นกัน
.
👉 2) เมทริกซ์
คือกลุ่มของจำนวนตัวเลข ที่เขียนเรียงกันเป็นรูปสี่เหลี่ยมผืนผ้าหรือจัตุรัส
นอกจากใช้แก้สมการหลายตัวแปรแล้ว
จะมีประโยชน์เวลานำไปประมวลภาพ (Image processing)
หรืองานพวกคอมพิวเตอร์วิชั่น (computer vision)
.
ต้องบอกอย่างนี้ว่า รูปภาพดิจิตอลที่เราเห็นเป็นสีสันสวยงาม
แต่ทว่าคอมไม่ได้มองเห็นเหมือนคน
มันมองเห็นเป็นเมทริกซ์ โดยข้างในเมทริกซ์ก็คือตัวเลขของค่าสี
และเราสามารถกระทำการคณิตศาสตร์กับรูปภาพได้
เช่น บวกลบ คูณหาร กับรูปภาพดิจิตอล ในมุมของเมทริกซ์
.
👉 3) ความน่าจะเป็น
ยกตัวอย่างเช่น ทฤษฏี Bayes' theorem
ทฤษฏีหนึงของความน่าจะเป็น
จะใช้หาว่าสมมติฐานใดน่าจะถูกต้องที่สุด โดยใช้ความรู้ก่อนหน้า (Prior Knowledge)
.
ทฤษีนี้ถูกนำไปใช้ในงานวิเคราะห์ข้อมูล รวมทั้งการเรียนรู้ของเครื่อง
เช่น จงหาความน่าจะเป็นที่ชาเขียวขวดนั้นจะผลิตจากโรงงานจากประเทศไทย
จงหาความน่าจะเป็นว่าผู้ป่วยจะเป็นโรคมะเร็ง เมื่อหายจากการติดเชื้อไวรัสโคโรนา
เป็นต้น
.
👉 4) แคลคูลัส
ตัวอย่างเช่น ถูกนำมาใช้ใน neural network
ซึ่งก็เครือข่ายประสาทเทียมที่เลียนแบบเซลล์สมอง
แต่จริงๆ ข้างในเครือข่ายจะประกอบไปด้วยน้ำหนัก
.
น้ำหนักที่ว่านี้มันก็คือตัวเลขจำนวนจริง ที่เริ่มต้นสุ่มขึ้นมา
แล้วเวลาจะหาค่าน้ำหนักที่เหมาะสม (optimize)
มันจะถูกปรับทีละเล็กทีละน้อย
โดยอาศัยหลักการเรื่องอนุพันธ์ หรือดิฟนั่นแหละ
.
👉 5) ตรรกศาสตร์
วิชานี้พูดถึง "ประพจน์" หมายถึงประโยคที่ให้ค่าออกมาเป็น True หรืด False
รวมถึงการใช้ตัวเชื่อมประพจน์แบบต่างๆ ไม่ว่าจะเป็น "และ" "หรือ" "ก็ต่อเมื่อ" เป็นต้น
.
ศาสตร์ด้านนี้เป็นพื้นฐานของระบบคอมพิวเตอร์
เพราะวงจรคอมพิวเตอร์พื้นฐาน มีแต่ตัวเลข 0 หรือ 1
จึงสามารถแทนด้วย False หรือ True ในทางตรรกศาสตร์
ไม่เพียงเท่านั้นวงจรอิเลคทรอนิกส์ ก็มีการดำเนินทางตรรกศาสตร์อีกด้วย
ไม่ว่าจะเป็น "และ" "หรือ" "ไม่" เป็นต้น
.
ยิ่งการเขียนโปรแกรม ยิ่งใช้เยอะ
เพราะต้องเปรียบเทียบเงื่อนไข True หรือ False
ในการควบคุมเส้นทางการทำงานของโปรแกรม
.
👉 6) ฟังก์ชัน
ฟังก์ชันคือความสัมพันธ์ จากเซตหนึ่งที่เรียกว่า 'โดเมน' ไปยังอีกเซตหนึ่งที่เรียกว่า 'เรนจ์' โดยที่สมาชิกตัวหน้าไม่ซ้ำกัน
ซึ่งคอนเซปต์ฟังก์ชันในทางคณิตศาสตร์
ก็ถูกนำไปใช้ในการเขียนโปรแกรมแบบ functional programming
.
👉 7) เรขาคณิตวิเคราะห์
ถูกนำไปใช้ในวิชาคอมกราฟิก หรือเกมส์
ในมุมมองของคนที่ใช้โปรแกรมวาดรูปต่างๆ หรือโปรแกรมสร้างแอนนิมเชั่นต่างๆ
เราก็แค่คลิกๆ ลากๆ ก็สร้างเสร็จแล้วใช่มั๊ยล่ะ
.
แต่หารู้หรือไม่ว่า เบื้องเวลาโปรแกรมจะวาดรูปทรง เช่น สี่เหลี่ยม วงรี ภาพตัดกรวยต่างๆ
ล้วนอาศัย เรขาคณิตวิเคราะห์ พล็อตวาดรูปทีละจุดออกมาให้เราใช้งาน
.
👉 8) ปีทาโกรัส
ทฤษฏีสามเหลี่ยมอันโด่งดังถูกนำไปใช้วัดระยะทางระหว่างจุดได้
ซึ่งจะมีประโยชน์ในการแยกแยะข้อมูล โดยใช้อัลกอริทึม
K-Nearest Neighbors (KNN)
ชื่อไทยก็คือ "ขั้นตอนวิธีการเพื่อนบ้านใกล้ที่สุด "
มันจะถูกนำไปใช้งานวิเคราะห์ข้อมูล รวมทั้งการเรียนรู้ของเครื่องอีกด้วย
ไม่ขอพูดเยอะเดี่ยว ม.5 ก็จะได้รู้จัก KNN ในวิชาวิทยาการคำนวณ
.
👉 9) ทฤษฏีกราฟเบื้องต้น
อย่างทฤษฏีกราฟออยเลอร์ (Eulerian graph)
ที่ได้เรียนกันในชั้น ม.5 จะมีประโยชน์ในวิชาคอม
เช่น ตอนเรียนในวิชา network ของคอมพิเตอร์ เพื่อหาเส้นทางที่ดี่สุดในการส่งข้อมูล
หรือจะมองโครงสร้างข้อมูลเป็นแบบกราฟก็ได้ ก็ลองนึกถึงลิงค์ต่างในเว็บไซต์ สามารถจับโยงเป็นกราฟได้ด้วยนะ
.
👉 10) เอกซ์โพเนนเชียล และลอการิทึม
เราอาจไม่เห็นการประยุกต์ใช้ตรงๆ นะครับ
แต่ในการประเมินประสิทธิภาพของอัลกอริทึม เวลาเขียนโปรแกรม
เขาจะใช้ Big O ขอไม่อธิบายเยอะแล้วกันเนอะ
เรื่องนี้มีเขียนอยู่ตำราวิทยาการคำนวณชั้นม.4 (ไปหาอ่านเอาได้)
.
ซึ่งเทอม Big O บางครั้งก็อาจเห็นอยู่ในรูปเอกซ์โพเนนเซียล หรือลอการิทึมนั่นเอง
ถ้าไม่เข้าใจว่า เอกซ์โพเนนเซียล หรือลอการิทึม คืออะไร
ก็ไม่จะอธิบายได้ว่าประสิทธิภาพของอัลอริทึมเราดีหรือแย่
.
+++++++
เป็นไงยังครับ สนใจอยากรู้ว่า เลข ม.ปลาย
สามารถนำไปใช้ศึกษาต่ออะไรอีกบ้างไหมเนี่ย
ถ้าอยากรู้ ผมเลยขอแนะนำหนังสือ (ขายของหน่อย)
.
หนังสือ "ปัญญาประดิษฐ์ (AI) ไม่ยาก"
เข้าใจได้ด้วยเลขม. ปลาย เล่ม 1 (เนื้อหาภาษาไทย)
ติดอันดับ Best seller ในหมวดหนังสือคอมพิวเตอร์ ของ MEB
.
เนื้อหาจะอธิบายปัญญาประดิษฐ์ (A) ในมุมมองเลขม.ปลาย
โดยปราศจากการโค้ดดิ้งให้มึนหัว
พร้อมภาพประกอบสีสันให้ดูอ่านง่าย
.
สนใจสั่งซ์้อได้ที่
👉 https://www.mebmarket.com/web/index.php…
.
ส่วนตัวอย่างหนังสือ ก็ดูได้ลิงค์นี้
👉 https://www.dropbox.com/s/fg8l38hc0k9b…/chapter_example.pdf…
.
ขออภัยเล่มกระดาษตอนนี้ยังไม่มี โทดทีนะครัชชช
.
✍เขียนโดย โปรแกรมเมอร์ไทย thai progammer
🤓 Many people may have complained about ′′ learning the number, why I didn't get to use it
This one is just an example to know the number we studied in high school. The end.
Don't leave if you want to learn computer at high level.
.
👉 1) Linear equation
Start from a straight line equation that looks like y=mx+c called standard photo
- When m is action
- c section is a cutting point y axis
.
Linear equation. We will learn in grade 4
Enough in the university. 5 Computational Science
It will see the benefits of straight line equation being applied to data science (data science) work.
Linear regression data analytics
.
i.e. when we have data back in the past
Then can be taken to plot on the x and y graph.
The result appears that the information is in a straight line.
In the case, we can find the most suitable straight line equation (optimize)
Advance future forecasts
.
But in case the relationship of information found out is not a straight line.
We can also use an equation that is not a straight line to propose information.
.
👉 2) Matrix
Is a group of numbers written in a square or square.
Besides using to solve several variables.
It will be useful when it's leading to the image (Image processing)
Or computer vision jobs (computer vision)
.
I have to say this. The digital photos we see are colorful.
But the computer is not visible as a person.
It's seen as a matrix inside. The matrix is the number of colors.
And we can do math with pictures
Like, plus, multiply, multiply with digital photos in the corner of the matrix.
.
👉 3) Probability
For example, Bayes ' theorem theory.
Theory of probability
I will use which hypothesis is most accurate using previous knowledge (Prior Knowledge)
.
This theory is implemented in data analysis including machine learning.
For example, find the probability that green tea will be manufactured from factories from Thailand.
Find out the probability that patients will have cancer when they recover from Coronavirus infection.
Etc.
.
👉 4) Calculus
For example, being used in neural network.
Which is also an artificial neural network that imitates brain cells.
But really, the network is composed of weight.
.
This weight is also a random number of real numbers.
Time to find the right weight (optimize)
It will be slightly fined.
By living the principle of derivative or divative.
.
👉 5) Logic
This subject speaks of ′′ pronouncement ′′ meaning True or False sentence.
Including using different plural connectors, whether it's ′′ and or or if etc.
.
This aspect of science is the basis of computer system.
Because the basic computer circuit is only 0 or 1 numbers.
So it can be replaced with False or True in logic.
Not only that, the electronic circuit also has logical action.
Whether it's ′′ and or or no etc.
.
The more the programming, the more you use.
Because we have to compare True or False conditions.
In control of the programming path
.
👉 6) function
A function is a relationship from one set called ' domain ' to another set called ' Range ' by a unique face member.
Which concept function in mathematics.
It's been applied to functional programming.
.
👉 7) Analytical Geometry
Being applied in a graphic or games class
In view of people using various drawing programs or Animation Builders.
I'm just a click and drag and it's done. Aren't we?
.
But do you know that in time, the program will draw shapes like a square, rectangular, cone collage.
All living in geometry, analyzing the plot, drawing one at a time. Let us use it.
.
👉 👉 8) Tacorus
The famous triangle theory is implemented to measure the distance between points.
Which would be useful to digest data using algorithms.
K-Nearest Neighbors (KNN)
Thai name is ′′ The closest neighborhood process
It will also be implemented for data analysis including machine learning.
I don't want to talk too much. 5 to know KNN in computational science.
.
👉 9) Preliminary Graph Theory
Theoretically, Graphite Oler (Eulerian Graph)
I have studied in the middle school class. 5 will come in handy in computer class
For example, in a computer network class to find the best way to send information.
Or look at the data structure as a graph. Think about the different links on the website. They can be linked as graphics.
.
👉 10) m AND LOGARIETYM
We may not see the application straight away.
But in assessing the performance of programming time algorithm.
He's going to use Big O. Let's not explain a lot.
This story is written in the textbook. Calculating class. 4 (go to read)
.
The Big O term may sometimes be seen in an ex-ponytail or a logic.
If you don't understand what is Exponity or Logarithum?
It doesn't explain whether our algorithm performance is good or bad.
.
+++++++
How is it? If interested, I want to know the number. The end.
Can I study anything else?
If you want to know, I recommend a book (selling stuff)
.
Book ′′ Artificial Intelligence (AI) is not difficult ′′
You can understand by the number of km. End of book 1 (Thai content)
Best seller in MEB computer book category
.
Content describes Artificial Intelligence (A) in the view of the number. The end.
Without a coding dizzy
With colorful illustrations to be seen. Easy to read.
.
If interested, order at.
👉 https://www.mebmarket.com/web/index.php?action=BookDetails&data=YToyOntzOjc6InVzZXJfaWQiO3M6NzoiMTcyNTQ4MyI7czo3OiJib29rX2lkIjtzOjY6IjEwODI0NiI7fQ&fbclid=IwAR11zxJea0OnJy5tbfIlSxo4UQmsemh_8TuBF0ddjJQzzliMFFoFz1AtTo4
.
As private as a book, you can see this link.
👉 https://www.dropbox.com/s/fg8l38hc0k9b0md/chapter_example.pdf?dl=0
.
Sorry for paper book. I haven't got it yet. I'm sorry.
.
✍ Written by Thai programmer thai progammerTranslated
graph algorithm 在 在地上滾的工程師 Nic Youtube 的評價
硬核的知識也許不是每個工程師都能夠在職涯發展中完全運用到,但無論是本科系、轉職、自學成為工程師的朋友,都應該要知道,這些紮實的背景知識提早學習起來,在未來的日子裡,只有好沒有壞。
就透過本影片我的真實經驗分享,告訴你這些我在大學時期看似枯燥乏味的理論,其實就是程式設計內功,而日後沉睡已久的內功卻又恰巧的在職涯旅途中碰上用處。
章節:
00:00 學這些有用嗎
00:52 我與速成班的距離
04:45 業務增長後的影響
06:36 基本功知識科普
喜歡影片的話!可以幫忙點個喜歡以及分享、訂閱唷!😘
━━━━━━━━━━━━━━━━
⭐ 蝦皮賣場: https://shopee.tw/bboyceo
⭐ instagram (生活日常): https://www.instagram.com/niclin_tw/
⭐ Facebook (資訊分享): https://www.facebook.com/niclin.dev
⭐ Blog (技術筆記): https://blog.niclin.tw
⭐ Linkedin (個人履歷): https://www.linkedin.com/in/nic-lin
⭐ Github: https://github.com/niclin
⭐ Podcast: https://anchor.fm/niclin
━━━━━━━━━━━━━━━━
🌟 任何問題或合作邀約信箱: niclin0226@gmail.com
#資料結構 #演算法 #計算機概論 #前端 #後端 #工程師
graph algorithm 在 BorntoDev Youtube 的評價
?Discrete Math For Programming ปูพื้นฐานคณิตศาสตร์สำหรับคอมพิวเตอร์ในคอร์สเดียว !?
.
หากคุณคิดว่าคณิตศาสตร์เป็นเรื่องยาก ?
.
กำลังวางแผนเรียนต่อระดับมหาวิทยาลัยด้านคอมพิวเตอร์ ?
.
ต้องการพัฒนาทักษะเพื่อต่อยอดการพัฒนา Algorithm ?
.
หากคุณเบื่อกับการเรียนแบบเดิมๆ ที่น่าเบื่อ ไม่สนุก ไม่ตื่นเต้น ?
.
พบกันได้ในคอร์สเรียน Discrete Math For Programming ที่รวมทุกเรื่องที่สำคัญของคณิตศาสตร์สำหรับคอมพิวเตอร์ให้คุณแล้วในคอร์สเรียนเดียว !
.
โดยออกแบบเน้นผู้เรียนเป็นศูนย์กลาง เพื่อให้ได้รับความรู้อย่างแท้จริง กับระบบการเรียนแบบออนไลน์ พร้อมโจทย์แบบฝึกหัดที่พัฒนากระบวนการคิด แล้วมุมมองของคณิตศาสตร์คุณจะเปลี่ยนไป !
.
เนื้อหาครอบคลุมที่สุดในประเทศ ! ด้วยพาร์ทหลักๆ ถึง 10 เรื่อง
.
1.Introduction To Discrete Math
วางรากฐานให้เข้าใจแนวคิดของคณิตศาสตร์ไม่ต่อเนื่อง
.
2.Modular Arithmetic
ความรู้เบื้องต้นเกี่ยวกับทฤษฎีจานวน ทบทวน ครน. หรม. จำนวนเฉพาะสัมพัทธ์ ฟังก์ชันฟีออยเลอร์
.
3.Logic & Proof
ประพจน์และค่าความจริง ตัวปฏิบัติการตรรกะ สัจจะนิรันดร์และข้อขัดแย้ง การสมมูล ความสมเหตุสมผล การอ้างเหตุผล ตรรกศาตร์ภาคแสดง ตัวบ่งปริมาณ กฎแห่งการอนุมาน
.
4.Set, Relation And Function
เรื่องน่ารู้เกี่ยวกับเซต ความสัมพันธ์ และ ฟังก์ชันที่มีความสำคัญต่อการพัฒนาโปรแกรมอย่างยิ่ง !
.
5.Algorithm
เน้นการวิเคราะห์อัลกอริทึม และ Asymptotic Notation ที่ได้แก่เรื่องสำคัญอย่าง Big-O Big-Omega รวมถึง Big-Theta
.
6.Counting And Probability
การนับและความน่าจะเป็น หนึ่งในเรื่องที่ขาดไม่ได้ของคณิตศาสตร์ไม่ต่อเนื่อง สรุปมาให้คุณแล้วที่นี่ !
.
7.Graph And Tree
กราฟ รวมถึง แผนภาพต้นไม้ หนึ่งในเรื่องสำคัญที่สามารถประยุกต์ทั้งการคำนวณ รวมถึงออกแบบระบบด้วยแผนภาพได้อีกด้วย
.
8.ลำดับ อนุกรมและเมทริกซ์
เรื่องหลักในการจัดการข้อมูล การสังเกต และ ทฤษฏีเมทริกซ์ ที่เป็นเบื้องหลังของระบบคอมพิวเตอร์ทั้งเรื่องกราฟิก การจัดเก็บข้อมูล เรียกว่าห้ามพลาด !
.
9.Induction And Recursion
การอุปนัยเชิงคณิตศาสตร์ และ Recursion สิ่งสำคัญที่ควรรู้ก่อนพัฒนาโปรแกรม ไม่พลาดทุกพื้นฐาน !
.
10.Automata
เราจะรู้ได้อย่างไรว่าจะกำหนดให้เครื่องจักรทำงานเองได้อย่างไร ? Automata จะมาไขคำตอบให้เรารู้กัน !
.
หากเรียนจบครบ พร้อมทำแบบฝึกหัด และ โปรเจคจบครบถ้วน รับไปเลย
Verified Certificate จากบริษัท บอร์นทูเดฟ จำกัด ไปเลยทันที !
.
? สามารถติดตามโปรโมชันสำหรับช่วง Pre-Order ได้แล้วที่หน้าเว็บไซต์
โปรโมชันพิเศษ ! สำหรับ 50 ท่านแรก รับส่วนลดสูงสุด 50% ไปเลย !
(หลังจากครบกำหนด 50 ท่านแล้วจะปรับไปเป็นราคาปกติ)
.
ดูรายละเอียดได้ที่เว็บไซต์ของเรากันเลย :D
https://www.borntodev.com/discrete-math-for-programming/
graph algorithm 在 Graph Data Structure And Algorithms - GeeksforGeeks 的相關結果
A Graph is a non-linear data structure consisting of nodes and edges. The nodes are sometimes also referred to as vertices and the edges are ... ... <看更多>
graph algorithm 在 10 Graph Algorithms Visually Explained | ... 的相關結果
A graph consists of a finite set of vertices or nodes and a set of edges connecting these vertices. Two vertices are said to be adjacent if they ... ... <看更多>
graph algorithm 在 Graph: Intro(簡介) 的相關結果
以圖一中的課程與其先修科目為例,vertex(Data Structures)是vertex(Analysis of Algorithm)的先修課程,相反則否,因此,連結兩個vertex之edge具有方向性,而 ... ... <看更多>