[筆記分享] 我如何在 Anaconda 上,安裝 TensorFlow 2.x,並開啟 GPU 加速
Evernote 網址: https://bit.ly/33K77F9
--------------
最近我正在台大計算機中心,教授「深度學習」這門課程。整門深度學習,用得最多的函式庫就是 TensorFlow 了。它可以用來建構深度學習所需要的「神經網路」架構,所以任一個深度學習工程師,都得要會安裝。
深度學習的開發環境很多!我個人偏好 Google Colab(線上環境)與 Anaconda(本地端環境)。Colab 的執行環境,Google 工程師已經幫你裝好了。你只要點擊 https://colab.research.google.com 就能用。比泡麵還簡單!但你也只能被動接受 Google 工程師幫你裝好的執行環境。畢竟「線上平台」彈性還是比「本地端平台」要小一點。
早期(TensorFlow 1.x 時期)要裝 TensorFlow,並開啟 GPU 圖形加速功能,只要開啟 Anaconda Prompt 命令列視窗,輸入下面這一行就可以了:
conda install tensorflow-gpu
但 TensorFlow 2.x 之後,Anaconda 並沒有把 conda 這個指令調整得很好。大家已經用到 TensorFlow 2.3 了,conda 安裝出來的最新版居然只到 TensorFlow 2.1。更慘的是,開啟 GPU 加速時,所需搭配的 cuDNN 函式庫與 CUDA Toolkit 版本,也跟 TensorFlow 2.1 這個版本衝得亂七八糟!總之,就是一堆同學裝不起來!機器空有獨立顯卡,但無法發揮 GPU 加速平行運算的能力!
有鑑於此,我今天早上就親自「試水溫」,想辦法找出這幾樣東西的排列組合,到底怎麼樣是對的:
Python版本 x nVidia驅動程式版本 x TensorFlow版本 x cuDNN 函式庫版本 x CUDA Toolkit版本
也順便找出最順暢的安裝流程,分享給大家。希望有需要的朋友能喜歡!
祝福大家都能釋放顯卡平行處理的威力,讓你跑神經網路時,硬是比別人快好幾倍!
有我說明不足的地方,歡迎在下方留言。不敢說一定有能力解決,但我會盡力的! :-)
PS: 本文歡迎轉發、按讚、留言鼓勵我一下!您的隻字片語,都是讓我繼續提供好物的動力喔!
--------
看更多的紀老師,學更多的程式語言:
● YOTTA Python 課程購買: https://bit.ly/2k0zwCy
● YOTTA 機器學習 課程購買: https://bit.ly/30ydLvb
● Facebook 粉絲頁: https://goo.gl/N1z9JB
● YouTube 頻道: https://goo.gl/pQsdCt
如果您覺得這個粉絲頁不錯,請到「評論區」給我一個好評喔!
https://www.facebook.com/pg/teacherchi/reviews/
cuda toolkit 在 零壹科技 Facebook 八卦
◤ NVIDIA #GTC20 中文版線上研討會來囉!
5⃣大精選主題.5⃣位專業講師.週3⃣準時上線
「7 月 1 日起,無論是最新 Ampere 架構、邊緣運算 EGX 平台、Jetson Xavier NX 開發套件或適用於 GPU 加速的 RAPIDS 開源工具,藉由專業師資詳細解說,帶你深入了解2020 GPU 最新技術及運算趨勢。」
——————————————————
▪️ 7/1(三)15:00-16:00 👉 https://reurl.cc/O1aaZg
#CUDA 全新世代:支援全新 Ampere 架構 CUDA 平行化運算 Toolkit
▪️ 7/8(三)15:00-16:00 👉 https://reurl.cc/z8GGve
專為企業打造的 AI 系統:詳解 #Ampere 架構及 DGX Ampere 軟硬體強大效能
▪️ 7/15(三)15:00-16:00 👉 https://reurl.cc/62441k
探究 NVIDIA #EGX 平台如何突破即時 AI 於邊緣運算
▪️ 7/22(三)15:00-16:00 👉 https://reurl.cc/WdYY55
全球最小 AI 超級電腦:NVIDIA #Jetson Xaiver NX 開發者套件
▪️ 7/29(三)15:00-16:00 👉 https://reurl.cc/kdbbDq
NVIDIA 持續支援 #RAPIDS 開源平台協助機器學習效能更卓越
cuda toolkit 在 CUDA Toolkit | NVIDIA Developer - Pinterest 的八卦
Jun 21, 2018 - CUDA Toolkit Develop, Optimize and Deploy GPU-Accelerated Apps The NVIDIA® CUDA® Toolkit provides a development environment for creating high ... ... <看更多>