***** Geek Series 3-1*****
無限的力量-- 微積分如何揭露宇宙的奧秘
"It's the language God talks" -- Richard Feynman telling Herman Wouk about calculus
非常符合時事的一本書。話說1665年倫敦大瘟疫的時候,人在劍橋大學的牛頓被要求在家自主健康管理。也就是宅在家的這段時間,22歲的牛頓發展出早期微積分的數學基礎,真的是Work from home (在家工作)的典範啊!
由美國康乃爾大學知名的應用數學教授所寫的這本書,讓數學變得很有人性,也充分描繪了微積分的美感。微積分在物理學家費爾曼口中是“上帝的語言”,雖然看起來很艱難,但作者開宗明義說不要以貌取人,因為微積分的精神,是讓複雜的事情變簡單!
“Calculus is defined by its credo, to solve a hard problem about anything continuous, slice it into infinitely many parts and solve them. By putting the answers back together, you can make sense of the original whole. I've called this credo the Infinity Principle"
(微積分的定義正如它的核心信念-- 如果要解決一個關於連續性的問題, 先把問題切成無限多的小塊然後找尋解答,當你把那些答案加總回去時,就能拼湊出原本的全貌,我稱這個信念為“無限的原則”)
曲線就是一種連續改變的方向
移動就是一種連續改變的位置
整本書貫穿科學史,可以看到微積分是如何從跨領域的激盪才發現出來的。阿基米德思考曲線或是球體的容積。天文學家哥白尼和克卜勒從觀察星球發現特殊的星球運動行為,為日後牛頓三定律鋪路。身兼哲學家和數學家的笛卡兒如何一邊發展他的理論,一邊把業餘數學家費馬 (Fermat)當成假想敵不斷嗆聲。牛頓在家辦公的成就讓十七世紀開始大放異彩。其中微分方程的應用蓬勃發展,像是超級怕冷整年穿著衛生衣的傅立葉發展出熱傳導公式(衛生衣是我自己加的,怕冷是真的)。冷戰時期的科學家計算雷達訊號,以及“關鍵少數”故事中太空時代大量用微積分判斷降落路徑的“電腦”-- 一群用筆算數的女人們。
現代應用更加多元。沒有微分和微分方程,就不會有GPS定位,不會有愛滋病雞尾酒療法,也不會有String theory 而發明的微波爐和音樂合成器。
沒有積分,就沒有整形手術需要的建模,也沒有電腦動畫的史瑞克。
最後作者談到微積分的未來,特別是面對許多非線性的問題,例如生物和社會科學的領域。隨著大數據的採集,人工智慧還DNA科學的發展,微積分還有好多待開發的應用。當我們思考渺小的人類竟然可以預測光年之外黑洞的行為,同時發現自然界每一處都像是精心設計的演算法和程式編碼,等待著我們發覺,就真的覺得這個“上帝的語言”,讓人興奮期待,也讓人敬畏謙卑。
全文與作者在YouTube上的小故事在部落格中👇👇👇
https://dushuyizhi.net/infinite-powers-%e7%84%a1%e9%99%90%e7%9a%84%e5%8a%9b%e9%87%8f-%e5%be%ae%e7%a9%8d%e5%88%86%e5%a6%82%e4%bd%95%e6%8f%ad%e9%9c%b2%e5%ae%87%e5%ae%99%e7%9a%84%e5%a5%a7%e7%a7%98/
#Infinitepowers #Calculus #math #isaacnewton #牛頓 #微積分
雞尾酒定律 在 國立臺灣大學 National Taiwan University Facebook 八卦
【臺大材料所跨國團隊發展極高強度低成本新穎鋼材榮登《Science》期刊】
臺大參與兩岸三地合作發展極高強度、高延性、低成本新穎鋼鐵材料,汽車、航太、及能源工業都需要高強度且高延性的金屬材料來提高能源效率並降減溫室氣體排放量。然而,金屬材料的強度和延性經常是魚與熊掌不可兼得,增加強度的同時往往導致材料延展性下降,進而影響料成形性與衝擊性能。兩岸三地年輕學者合作研究突破過往材料差排理論,大幅提高強度同時仍使材料兼具延展性。此項研究於2017年08月24日發表於《Science》期刊,篇名為《High dislocation density induced large ductility in deformed and partitioned steels》),全文請參照連結B. B. He et al., Science, 10.1126/science.aan0177 (2017)。
「金屬材料經過塑性變形,差排密度提高,故強度提高,但延展性變差,此稱為加工硬化。」
這段敘論述幾乎可以被視為材料科學的定律,而香港大學機械工程系黃明欣博士過去便一直思索以提高「可動差排」密度來維持塑性的理論與可能性,合作團隊中北京科技大學羅海文博士認為能以中錳鋼合金系統來進行材料設計,而臺灣大學顏鴻威與程冠儒則以電子顯微鏡技術進行機構解析。該團隊認為以調配雞尾酒的方法能夠使材料的顯微結構更複雜,若能同時有效控制複雜顯微結構以及變形組織演化,則有機會提高可動差排密度來維持塑性,最後團隊以「變形繼以配分(deformation & partition, D&P)」的技術實現了此具有突破性機械性能的鋼鐵材料。此新穎合金具有2.0GPa以上之降伏強度(材料抵抗塑性變形的能力),而其均勻延伸率仍可達到16%以上。
研究團隊設計了Fe-10Mn-0.47C-2Al-0.7V (in wt. %)的中錳鋼來實現變形繼以配分(D&P)的製程, 通過適量冷軋變形,隨後進行低溫回火(400 °C)得到高差排密度的D&P鋼,此特殊鋼的介穩態沃斯田鐵鑲嵌在高差排密度的麻田散鐵中(詳見圖1)。麻田散鐵是在冷軋的過程由沃斯田鐵相變形成的,而在低溫回火時,麻田散鐵中的碳會配分給沃斯田鐵,保留了麻田散鐵的差排密度,同時避免了中高碳麻田散鐵的脆性,更值得注意的是,此類型差排雖然密度極高,卻能夠維持其滑移的自由度。另一方面,獲得碳配分的沃斯田鐵能在材料變形過程中相變態形成麻田散鐵,輔助性地共同維持了材料的高均勻延伸率(延性)。
相較於普遍使用的超高強度汽車鋼(圖2: DP 780和Q&P 980)和應用於航空及國防工業的麻時效鋼,新開發的D&P鋼不僅具有更高的屈服強度,而且擁有更好的延伸率。研究團隊中的幾位學者近期已經獨立發表許多突破強度和延性之間抵換的新型鋼種(詳見圖2),其中包含黃明欣團隊於2015年研發的納米雙晶鋼(Nano Twin Steel),顏鴻威團隊於2015年發表的超細晶雙相鋼(UFG-Duplex Steel),羅海文於2016年發表的相變/雙晶誘發應變中錳鋼(TRIP/TWIP M-Mn Steel),但是鋼鐵之強度都停滯在約1500 MPa左右,透過合作薈萃三人過去的顯微結構控制技術與經驗,使D&P鋼之機械性大幅突破過去之研究成果。
除了差排理論與機械性能上的突破,D&P鋼不僅達到了麻時效鋼的強度(圖2: Maraging Steel),並具有優異的延展性,而其原材料價格僅有麻時效鋼的20%。因此,通過顯微結構與缺陷的複雜化與可控化,研究團隊在降低經濟成本的同時得到了超高強度的鋼鐵。因此,D&P鋼具有工業生產的潛力,而「如何調配可動差排」這樣的概念亦能廣泛應用於汽車、航太、以及能源等工程材料領域當中。
此研究由香港大學主導,協同北京科技大學、臺灣大學和香港城市大學的青年科學家共同合作所完成的,為兩岸三地青年科學家成功合作的例子。顏鴻威博士師承臺灣材料顯微結構大師楊哲人教授,於2014年8月回到臺灣大學任教,並成立「顯微結構與缺陷物理研究團隊」,透過此研究指導程冠儒同學相關學理與技術,團隊成員特別感謝臺灣大學與科技部材料學門的經費補助,使其能在2015年研究室草創狀態下就展開D&P鋼之顯微結構與變形機制剖析研究,其間獲英國Oxford Instruments設備助拳,最後於2016年底順利完成這項合作研究。臺灣大學自陸志鴻校長1972年建立第一部穿透式電子顯微鏡,至楊哲人教授建立先進鋼鐵組織控制學群,迄今已經有高過40年歷史,而程冠儒同學繼承了臺大悠久的顯微結構分析傳統,並展現驚豔之研究成果,相當難得。未來臺大將持續深耕顯微結構與缺陷分析之專業教育、先進設備、以及前瞻應用研究。
雞尾酒定律 在 #雞尾酒定律- YouTube 的八卦
【鸡尾酒入门3.33】妈妈再也不用担心我看不懂酒单了! · 判定牛市:彼得林奇鸡尾酒会定律 · 2022/11/01 雞尾酒定律第一階段! · 【調酒教學】簡易調酒方法:大都會雞尾酒 ... ... <看更多>