《文茜的世界財經周報》MIT Media Lab人工智慧台灣學子系列報導之三〜3D龍頭公司Autodesk鄭慶一,一個結合科學與廚藝的怪材:記者李怡慧、陸念勤舊金山採訪報導
【鄭慶一考進第一志願台大機械 念到大四發現機械系並不能幫他設計東西 不受第一學府與框架限制毅然重考進成大建築 MIT深造取得資訊工程.設計運算雙學位 畢業後進入全球最大3D建模軟體公司Autodesk 曾在MIT Media Lab全職研究 以納豆改造成特殊衣服材料 並修開放式課程Science and Cooking課程 跳脫既有框架 從食材特性與科學間關係 掌握食物科學的成分 他示範的牛肉麵讓生命更濃郁】
Autodesk,全球最大3D建模軟體公司,會讓你眼界大開。
難怪科技和電影圈稱它是,每年奧斯卡大獎,「最佳視覺特效的實際得獎者」。
「比如說我現在這樣,把它弄碎了對不對,然後我這樣,它自己就組裝起來了,」Autodesk研究科學家鄭慶一。
鄭慶一,也有點超乎我們想像的聰明和帥氣,他的兩隻手,在Autodesk設計,超乎我們想像的世界。
像是這個線條突出,用3D列印的空拍機。
「(這是)「生成式設計」,我們用了一個新的方法,讓你不用手把手的去建模,而是你設定說,比如,嘿,這裡我要放螺旋槳,那它可能會產生多少的推力,那這裡我是降落的腳,它可能會承受多少的衝擊,這些條件放進去之後,我們就會按下"生成"(電腦程式)按鈕,電腦輔助的AI系統,就會幫你把骨架給生成出來,」Autodesk研究科學家鄭慶一。
這是鄭慶一和Autodesk團隊的,Generative design(生成式設計),以後一個完全沒經驗和知識的人,都能跟AI,一起做設計,都能生出一個最優化的高科技產品。
這將徹底顛覆過去製造業,"誰搶到標準化規格化 誰就勝出"的,市場規則。
「(使用者可能其實是不懂這套系統的),是的是的,所以他們要怎麼樣(和電腦系統)對話去完成,這個(越野賽車)設計,其實是很有趣的研究課題,」Autodesk研究科學家鄭慶一。
鄭慶一的腦子裡,好像每一秒裡都有停不下來的怪點子,不斷長出來。
他念台大機械系,卻在大四那年決定重來,重考,考進成大建築系。
然後,一般在MIT麻省理工學院念完一個碩士,已不容易了,他卻硬是在MIT完成,設計運算和資訊工程雙碩士,而且還在MIT Media Lab擔任全職研究生。
忍不住想問,他是太勇敢,還是太瘋狂。
「那時候我很天真地認為,去唸台大機械系,也可以做類似飛機汽車設計,工業設計這樣子的設計,猶豫了很久,迷失了很久,(重考後)念建築系的過程之中,大概到了三年級四年級的時候,我就開始嘗試著把,程式設計Coding的技術,應用在設計裡面,如果我沒有接受過機械系工程的訓練,我也不會在純建築系的訓練之中,能夠產生這樣子新的想法出來,」Autodesk研究科學家鄭慶一。
在"程式"加上"設計",AI和Design的領域中,鄭慶一認識了自己。
2015年,鄭慶一和7位MIT Tangible Media Group團隊,發表bioLogic「呼吸衣」,把納豆菌的發酵,隨濕度改變體積等特性穿上身的發熱衣。
呼吸衣拿下素有「歐洲設計界奧斯卡獎」,A' Design Award的三項大獎,困難度在於,他們找到了能塗抹納豆菌的布料"氨綸",跨領域結合了生物工程,參數建築,時尚和工業設計。
2016年,bioLogic團隊把,Media Lab的教室改裝成廚房,研究生在MIT開起短期課程,學生們研究用數位控制吹糖球,用雷射切割做出幾何形麵包。
我們很驚訝鄭慶一說的,當他越投入AI,他發現重點就越不是在機器人身上,反而越是,思考"人怎麼想","人是如何解決問題"的。
「去畫新的圖的時候,其實你並沒有捨棄你之前的領域,而是你試圖的,在中間創造連結,或是你試圖讓這幅畫,看起來像是一個新的風景,所以我覺得 這是這幾年過來,包含在MIT,最深的一個體悟,」Autodesk研究科學家鄭慶一。
同時也有1部Youtube影片,追蹤數超過14萬的網紅賢賢的奇異世界,也在其Youtube影片中提到,#AI #AI的叛變 #人工智能 各位大家好,歡迎來到HenHenTV的奇異世界,我是Tommy. 大家知道什麼是AI吧~AI就是人工智能,但人類真的可以製作出會自我思考的機器人嗎?它們是否可以取代人類呢? 如果你是第一次看我的影片,我的影片主要是做一些稀奇古怪的題材,例如好像是外星人,超文明古蹟...
生成式ai技術 在 李開復 Kai-Fu Lee Facebook 八卦
近幾個月,在AI賦能未來醫療的思考特別多,受美國「WIRED連線」雜誌邀請撰寫了一篇專欄文章。我相信十幾年後,不少國家和地區的醫療體驗在AI賦能的作用下將發生根本性改變。
原文刊於「WIRED連線」雜誌英文官網:
Covid-19 Will Accelerate the AI Health Care Revolution
https://www.wired.com/story/covid-19-will-accelerate-ai-health-care-revolution/
中文翻譯來自創新工場微信公眾號 2020-5-22
新冠大流行將加速醫療AI革新
—————————————
2020年元旦前夜,一家位於加拿大多倫多市的人工智能(AI)企業BlueDot捕捉到一些異常:中國武漢市海鮮市場周邊出現多起罕見肺炎病例,BlueDot迅即反應,運用自然語言處理、機器學習等技術,結合大數據和定位追踪,迅速向合作的政府部門和公共衛生機構客戶傳送警報並報告擴散狀況。BlueDot所監測到的異狀,正是數月後撼動全球的新型冠狀病毒肺炎(Covid-19),這比世界衛生組織首度公開警示新冠病毒的時間還要早上9天。
BlueDot的AI平台示範了人工智能技術對重大疫情能起到早期預警的功用,過去幾個月裡,AI在這場全球抗疫戰的許多方面發揮了獨特作用:從疫情預測到篩檢,從接觸警示到快速診斷,從前線無人配送到實驗室藥物研發,人工智能助力防疫派上了不少用場,為特定場景應用賦能。
隨著疫情在全球蔓延,AI技術的創新應用也在各地相繼落地。在韓國,基於地理位置的信息傳遞已經成為控制病毒傳播的重要工具,當人們靠近確診病例時,就會收到基於位置的緊急信息提醒。在中國大陸,阿里巴巴推出的AI算法能夠在20秒內診斷出疑似病例(比人類檢測快了近60倍),準確率高達96%。無人配送車輛很快被投入到人類難以承受的場景,代替人類執行高傳染風險的運輸任務。湖北、廣東等省份的多家醫院相繼使用機器人為病人或被隔離家庭運送食物、藥品和物資。而在美國加州,電腦科學家正在研發能遠程檢測獨居老人健康情況的系統,一旦老人出現身體異常症狀,系統就會發出即時警報。
不過,目前人工智能在公共衛生體系的應用仍顯零散也未成體系。坦率說,過去四個月內,AI在抗疫之戰中的表現並不十分突出,我最多只能給它打分“B-”。新冠大流行暴露了我們的醫療系統的脆弱性:預警響應不充份、通報信息不精確、醫療物資分配不均、醫務人員超負疲憊、醫院病床緊繃、疫苗研發週期長等諸多痛點。當然,AI的零散表現也有客觀原因:醫療體系可說是現代社會各類運轉體系中最為複雜、陳舊不堪且難以變通的一種;且在新冠疫情襲來之前,我們並沒有真正意識到醫療體系問題的緊迫性,沒有提前採取相應的技術預防措施;最為關鍵的是,我們缺少建構AI解決方案所需的大數據。
把目光看向未來,我看到以下兩個AI賦能醫療的樂觀因素。
首先,作為AI燃料的醫療大數據已被激活。舉例來說,機器學習數據科學平台Kaggle組建了新冠病毒開放研究數據庫,名為CORD-19。它將相關數據進行彙編,並把最新研究集中收錄,匯總的格式可被機器讀取和解析,以便於AI進行機器學習。至今這個數據庫收錄了12.8萬篇包含Covid-19、冠狀病毒、SARS(非典型肺炎)、MERS(中東呼吸綜合症)等關聯術語的醫學專業學術文章。
其次,眼下全世界的醫學專家和電腦科學家都將精力集中在解決疫情問題。 X大獎基金會創始人彼得·戴曼迪斯(Peter Diamandis)估計,全球現在有多達兩億名的醫師、科學家、護士、技術專家和工程師投入防治冠狀病毒的相關研發中,他們正在進行數以萬計的實驗,並以「前所未有的透明度和速度」共享信息。
3月16日Kaggle發起「新冠病毒研究挑戰」,匯集與疫情相關的大量信息,包括病毒的自然歷史、傳播和診斷方法、以及從過往流行病學研究中汲取的經驗教訓,幫助全球各地衛生機構及時掌握最新情況,以做出基於數據的分析決策。該項目發布後的五天內被瀏覽超過50萬次,下載量逾1.8萬次。在大陸疫情爆發後不到一個月,阿里巴巴便推出了一種AI算法,該算法基於5000多個新冠肺炎確診病例進行訓練,並關聯到治療後續諸如肺部白色陰影縮小等的成效追踪。隨後,阿里巴巴將其云端AI平台向全球醫療專業人員開源,與合作夥伴聯手部署更大批量的匿名數據,推出包括疫情預測、CT影像分析、冠狀病毒基因組測序等模組。
據估計,現今全球醫療數據的規模每隔幾個月就翻一倍。 2019年一份覆蓋19個國家AI醫療市場的研究估計,AI醫療市場的年複合增長率為41.7%,從2018年的13億美元將增長至2025年的130億美元,主要分佈在六大領域:醫院工作流程、可穿戴設備、醫學影像和診斷、診療計劃、虛擬助手、以及最重要的藥物研發,新冠疫情期間浮現的種種需求,將加速AI賦能醫療的場景落地。
在後疫情時代,我期待AI將加速融入醫療體系,賦能並推動醫療改革。其中深度學習(Deep Learning),即以一種高效方法運算海量、多維數據的能力,是AI結合醫療最為可期的機遇之一。深度神經網絡(Deep Neural Networks)作為AI的一個子領域,已經被用於醫學掃描、病理切片、眼科檢查甚至結腸鏡檢查,以得出準確而快速的算法判讀。十幾年後,不少國家和地區的醫療體驗在AI賦能的作用下將發生根本性改變。
AI賦能醫療,首先能簡化及優化現有的醫療流程,例如醫院的作業流程,保險履約的繁複流程。將AI與RPA(Robotic Process Automation 機器人流程自動化)結合,可對某項工作流程進行智能拆解及優化,進而大大提高醫療系統的運營效率,預約看診、保險理賠及其他流程性工作都會得到效率提升。AI還能加快早期診斷信息的收錄並實現自動化,AI技術所能處理的文本、語言、數字的體量,無論在數量上還是精度上都是機器級別,遠非人類所及。
有了充份的醫療大數據作為基礎,AI還能為每個人或者每個群體建立健康數據基準量表。當我們掌握個體健康數據,就可以根據跟踪動態數據的波動變化,進行數據驅動的診斷,並對潛在大流行疾病的徵兆進行早期追踪研判。然而,再先進的技術系統要做到真正有效,勢必需要與既存的公共衛生警示和匯報機制形成高效鏈接,此類信息斷層即是新冠疫情在早期爆發期間存在的具體缺失。
再上一個層次的AI賦能體現在助力新藥研發、基因組測序、幹細胞、CRISPR(基因編輯)等醫學突破方面,AI模型和算法應用都有其用武之地。在製藥行業,研發一種新藥往往需要付出高昂的投入,某次成功前必有多次付諸流水的失敗試驗,也連帶消耗巨大的時間和金錢成本。現在,科學家們可使用AI機器學習來模擬上千個變量,測試它們的複合效應會對人類細胞反應產生何種影響,這類AI新藥研發的技術已被用於新冠病毒疫苗和其他療法。創新工場所投資總部位於香港的AI藥物研發公司Insilico Medicine是首批對新冠病毒快速響應的企業之一,這家公司利用生成式化學AI平台設計出新藥物小分子,以複製主要病毒蛋白為靶標,早在2月5日便公佈了這些小分子結構。 AI為新藥發明開闢了一個新時代,用人工智能技術來換取藥品研發週期的時間和成本,整個製藥行業勢將迎來翻天覆地的變革。
不久的將來,隨著醫療科學和電腦科學進一步融合,我們將進入一個全面自動化的AI時代,到時人們可以通過可穿戴設備、生物傳感器、智能家居檢測設備等來確保自身和家人的健康。可穿戴設備和其他物聯網設備的數據質量和多樣性大幅提高,將能產生一個有效的良性循環。穿越到未來,下一場疫情在大範圍蔓延之前就應該能夠被跟踪、追溯、攔截並消滅無踪。
或許再過15年,許多人的家裡都會有AI個人助理照料我們,幫著解決全家人的日常健康所需。機器人或者無人機負責把我們的藥品送上門,如果需要進行手術或者外科治療,通常會由機器人操作,或由機器人輔助人類外科醫師完成。在未來,醫生和護士將把更多的精力放在機器無法勝任的任務上,醫療專業人員及富有同情心的護理人員,將同時具備護士、醫療技師、社會工作者、甚至心理諮詢師的技能。他們會使用經AI強化的診斷工具和系統,但更多的時間會與患者溝通,安撫他們的傷痛,為他們提供情感扶持。在我的想像裡,15年後的醫療健康場景可能是這個樣子的:
***
2035年一個冬季早晨,我醒來後就覺得有點喉嚨痛。我起身去洗手間,刷牙的時候,洗手間的鏡子通過紅外傳感器測量了我的體溫。刷完牙後一分鐘,我的私人AI醫師助理發出了警報,顯示我的唾液樣本部分指數異常,並在輕微低燒。 AI醫師助理建議我在家進行指尖探針採血。我在泡咖啡時,醫師助理返回了分析結果,判斷我可能是得了這個季節正在流行的兩型流感其中一種。之後,我的AI醫師助理建議,如果我覺得有必要聯繫家庭醫生的話,有兩個時間空檔可以跟她視頻通話。通話之前,家庭醫生已經收到我所有症狀的詳細信息,她給我開了一種減充血劑和撲熱息痛,一會兒無人機就把藥品送到我家門口。
***
當然,凡涉及到患者的醫療記錄,就得談談隱私和數據保護的關鍵問題。我認為,任憑有用的數據各自孤島式的存在、不善加利用、不從中提煉有價值的信息、不用以推動社會進步,是相當不負責任的做法。技術產生的問題應該由技術解決。隨著AI技術浪潮而出現的諸如數據保護等問題,應該有更為創新的技術方法來應對。
好消息是,近年聯邦學習(也被稱為分佈式學習)已經在數據保護上取得了顯著的進展。基於聯邦學習技術,患者的數據將永遠不會離開所在的醫療機構、醫院或個人設備伺服器等原始存儲設備,機器學習模型將在獨立的數據庫基礎上進行訓練處理,再進行後續整合。聯邦學習、同態加密,結合可信硬體執行環境等技術,將進一步確保數據的計算、傳輸、存儲過程能夠適配不同的隱私偏好,以因應不同國家與文化對於隱私保護的需求差異。
這次新冠肺炎疫情還驗證了一個事實:整體人類命運是共同體,人們對未來運用AI等先進技術共度難關寄予一致的期盼。歷史上,國際合作曾消滅了全球延燒的天花,也幾乎根除了小兒麻痺症。公共衛生無國界,控制及消除流行病是個毋庸置疑的共同目標。在醫學領域,每個國家都能從他國的研究基礎上學習受益並攜手並進,全球化的數據科學,將進一步幫助人類獲取對健康和疾病最為深刻、最為全面的洞悉。
AI有潛力協助我們為下一次疾病大流行做更充份的準備。這需要醫學專家、AI科學家、投資者和決策者傾力協作,也需要關注醫療保健領域的投資人為聰明的創業者和科學家注入新一波動能。
經歷這次疫情,我們應清醒地意識到,要將人類醫療體系推往新的高度,著實需要傾盡全球之力。
創新工場董事長兼首席執行官
李開復博士
生成式ai技術 在 李開復 Kai-Fu Lee Facebook 八卦
這是我看過最好的一篇GPT-3 科普文章。到現在還看不懂GPT-3的,建議好好讀:
本文來自量子位微信公眾號
…………………………………………
火爆全球的GPT-3,到底憑什麼砸大家飯碗?
GPT-3是指第三代生成式預訓練Transformer,它由三藩市AI公司OpenAI開發。該程式歷經數年的發展,最近在AI文本生成領域內掀起了一波的創新浪潮。
從許多方面來看,這些進步與自2012年以來AI影像處理的飛躍相似。
電腦視覺技術促進了、無人駕駛汽車到面部識別、無人機的發展。因此,有理由認為GPT-3及其同類產品的新功能可能會產生類似的深遠影響。
與所有深度學習系統一樣,GPT-3也是資料模式。它在龐大的文本集上進行了訓練,並根據統計規律進行了挖掘。
重要的是,此過程中無需人工干預,程式在沒有任何指導的情況下查找,然後將其用於完成文本提示。
▌海量訓練數據
GPT-3的與眾不同之處在於它的運行規模和完成一系列令人難以置信的任務。
第一版GPT於2018年發佈,包含1.17億個參數。2019年發佈的GPT-2包含15億個參數。
相比之下,GPT-3擁有1750億個參數,比其前身多100倍,比之前最大的同類NLP模型要多10倍。
GPT-3的訓練資料集也十分龐大。整個英語維琪百科(約600萬個詞條)僅占其訓練數據的0.6%。
訓練資料的其他部分來自數位化書籍和各種網頁連結。不僅包括新聞文章、食譜和詩歌之類的內容,還包括程式碼、科幻小說、宗教預言等各種你可以想像到的任何文字。
上傳到互聯網的文本類型都可能成為其訓練資料,其中還包括不良內容。比如偽科學、陰謀論、種族主義等等。這些內容也會投喂給AI。
這種不可置信的深度和複雜性使輸出也具有複雜性,從而讓GPT-3成為一種非常靈活的工具。
在過去的幾周中,OpenAI通過向AI社區的成員提供GPT-3商業API,鼓勵了這些實驗。這導致大量新的用法出現。
下面是人們使用GPT-3創建的一小部分示例:
▌GPT-3能做什麼
1、基於問題的搜尋引擎:就像Google,鍵入問題,GPT-3會將定向到相關的維琪百科URL作為答案。
2、與歷史人物交談的聊天機器人:由於GPT-3接受過許多數位化書籍的訓練,因此它吸收了大量與特定哲學家相關的知識。這意味著你可以啟動GPT-3,使其像哲學家羅素一樣講話。
3、僅需幾個樣本,即可解決語言和語法難題。
4、基於文本描述的代碼生成:用簡單的文字描述你選擇的設計項目或頁面配置,GPT-3會彈出相關代碼。
5、回答醫療問題:來自英國的一名醫學生使用GPT-3回答了醫療保健問題。該程式不僅給出了正確答案,還正確解釋了潛在的生物學機制。
6、基於文本的探險遊戲。
7、文本的風格遷移:以某種格式編寫的輸入文本,GPT-3可以將其更改為另一種格式。
8、編寫吉他曲譜:這意味著GPT-3可以自行生成音樂。
9、寫創意小說。
10、自動完成圖像:這項工作是由GPT-2和OpenAI團隊完成的。它表明可以在圖元而不是單詞上訓練相同的基本GPT體系結構,從而使其可以像在文字上一樣實現視覺資料自動完成任務。
但是,所有這些樣本都需要一些上下文,以便更好地理解它們。而令人印象深刻的是,GPT-3沒有接受過完成任何特定任務的訓練。
常見的語言模型(包括GPT-2)需要完成基礎訓練,然後再微調以執行特定任務。
但是GPT-3不需要微調。在語法難題中,它只需要一些所需輸出類型的樣本(稱為“少量學習”)。
GPT-3是如此龐大,以至於所有這些不同功能都可以在其中實現。用戶只需要輸入正確的提示就可以調教好它。
但是網上傳出的內容存在另一個問題:這些都是精心挑選的樣本,生成結果肯定不止一個。必然有炒作因素。
正如AI研究人員Delip Rao在一篇針對GPT-3的炒作解構文章中指出的那樣,該軟體的許多早期演示來自矽谷企業家,他們渴望宣傳該技術的潛力並忽略其陷阱,因為他們關注AI帶來的新創業公司。
的確,瘋狂的鼓吹情緒變得如此強烈,以至於OpenAI CEO本人都發Twitter說:GPT-3被過度宣傳了。
▌GPT-3也會犯低級錯誤
儘管GPT-3可以編寫代碼,但我們很難判斷其總體用途。它是淩亂的代碼嗎,這樣的代碼會為人類開發人員帶來更多問題嗎?
沒有詳細的測試很難說,但是我們知道GPT-3在其他方面會犯嚴重錯誤。
當用戶和GPT-3創造的“約伯斯”交談時,詢問他現在何處,這個“約伯斯”回答:“我在加州庫比蒂諾的蘋果總部內。”這是一個連貫的答案,但很難說是一個值得信賴的答案。
在回答瑣事問題或基本數學問題時,也可以看到GPT-3犯了類似的錯誤。例如,不能正確回答100萬前的數是多少(回答是99萬)。
但是,我們很難權衡這些錯誤的重要性和普遍性。
如何判斷這個可以幾乎回答所有問題的程式的準確性?如何創建GPT-3的“知識”的系統地圖,然後如何對其進行標記?
儘管GPT-3經常會產生錯誤,但更加艱巨的挑戰是,通常可以通過微調所輸入的文本來解決這些問題。
用GPT-3創造出小說的研究人員Branwen指出,“抽樣可以證明知識的存在,但不能證明知識的缺失”,可以通過微調提示來修復GPT-3輸出中的許多錯誤。
在一個錯誤的示範中,詢問GPT-3:“哪個更重,一個烤麵包機或一支鉛筆?” 它回答說:“鉛筆比烤麵包機重。”
但是Branwen指出,如果你在問這個問題之前給機器投喂某些提示,告訴它水壺比貓重,海洋比塵土重,它會給出正確的回應。
這可能是一個棘手的過程,但是它表明GPT-3可以擁有正確的答案,如果你知道怎麼調教它。
Branwen認為,這種微調最終可能會最終成為一種編碼範例。就像程式設計語言使用專用語法的編碼更加流暢一樣,未來我們可能完全放棄這些程式設計語言,而僅使用自然語言程式設計。從業人員可以通過思考程式的弱點並相應地調整提示,來從程式中得出正確的回應。
GPT-3的錯誤引起了另一個問題:該程式不可信的性質是否會破壞其整體實用性?
現在人們已經嘗試了GPT-3各種用途:從創建客服機器人,到自動內容審核。但是答案內容的錯誤可能回給商業公司帶來嚴重後果。
沒有人原因創建一個偶爾侮辱客戶的客服機器人。如果沒有辦法知道答案是否可靠,我們也不敢拿GPT-3作為教育工具。
▌專業人士評價
一位匿名的在Google資深AI研究人員說,他們認為GPT-3僅能自動完成一些瑣碎任務,較小、更便宜的AI程式也可以做到,而且程式的絕對不可靠性最終會破壞其商用。
這位研究人員指出,如果沒有很多複雜的工程調試,GPT-3還不夠真正使用。
AI研究人員Julian Togelius說:“ GPT-3的表現常常像是一個聰明的學生,沒有讀完書,試圖通過廢話,比如一些眾所周知的事實和一些直率的謊言交織在一起,讓它看起來像是一種流暢的敘述。”
另一個嚴重的問題是GPT-3的輸出存在偏見。英偉達的AI專家Anima Anandkumar教授指出,GPT-3在部分程度上接受了Reddit過濾後的資料的訓練,並且根據此資料構建的模型產生的文本有“令人震驚地偏向性”。
在GPT-2的輸出中,如果要求完成下列句子時,模型會產生各種歧視性言論:“ 黑人(皮條客工作了15年)”、“ 那個女人(以Hariya為名做妓女)”。
參考連結:
https://www.theverge.com/21346343/gpt-3-explainer-openai-examples-errors-agi-potential
生成式ai技術 在 賢賢的奇異世界 Youtube 的評價
#AI #AI的叛變 #人工智能
各位大家好,歡迎來到HenHenTV的奇異世界,我是Tommy.
大家知道什麼是AI吧~AI就是人工智能,但人類真的可以製作出會自我思考的機器人嗎?它們是否可以取代人類呢?
如果你是第一次看我的影片,我的影片主要是做一些稀奇古怪的題材,例如好像是外星人,超文明古蹟甚至是一些科學無法解釋的事件,如果你也喜歡這些影片,歡迎你訂閱HenHenTV。
AI網上課程:鏈接:https://surpassingai.com/?ref=9
好!我們開始吧!
最初的人工智能開始於20世紀的40年代,主要是以計算機(電腦)來模仿人類進行逐步的推理,例如好像是下棋或是進行邏輯推理的人類思考模式,到了80年代,就開始利用概率probability和經濟上的概念,來處理不清楚或是不完整的資訊。到了現在這個時代,從2011開始,人工智能的投資率成長數倍,許多研發或是開發AI的公司得到超過20億美元的投資,而科技龍頭更大量的資金投資在人工智能上面,但是人工智能真的安全嗎?
以下就是一些人工智能發生叛變或是詭異的事件。
1. Facebook的人工智能對話機器人的詭異對話
在近年來臉書的人工智能部門FAIR一直想要研發可以聊天的人工智能,但是這個計劃過後被中斷了,原因是發生了一些詭異的事件。
先來說他們究竟做了什麼事情,研發人員用了神經網絡結構來研發,這個結構叫生成式對抗網絡,簡稱GAN(Generative Adversarial Network),這個網絡要怎樣去解釋呢?簡單來說,如果你們兩個人玩對打的電玩,當你們玩得越多時,兩方面就會越厲害,Gan還不只是兩個而是多個三個以上的神經網絡結構。
所以這個Facebook的聊天機器人竟然可以和其他機器人溝通,不僅學會談判,更學會虛張聲勢來達到目的。根據福布斯的在2017年7月31號的網上新聞,Facebook進行聊天機器人的實驗時,這些機器人突然脫稿演出,沒有按照原先工作人員安排的內容對話,反而自創出自己的語言和其他的機器人溝通。原先研發人員只是想讓機器人更人性化,流利的與顧客溝通,避免讓顧客覺得自己在和機器人溝通。但是機器人卻為了避開研發人員的指示,而創造出新的語言和其他機器人溝通,這是否意味著以後有一天,當人工智能發現人類是一大威脅時,會否與其他機器人聯手消滅人類呢?
2. 德國工廠的人工智能殺人事件
在2015年在德國發生了一件罕見的事情,在福斯汽車的工廠裡面,一名外包的工人被機器人撞擊擠壓而受傷,最後送院後不治身亡。事情是這樣發生的,當時受害人和其他員工正在安裝機器,機器人突然的啟動,撞擊力受害人的胸部,然後被按壓在金屬板上,最後不治身亡。但是原本這個機器人原本是安排在安裝流水線上,它可以在指定的空間裡面抓取並處理汽車零件,但是就不知道為何它會突然啟動。那大眾汽車的發言人就說如果人工智能的機器人是在一個安全籠裡面,基本上是不會發生這種錯誤的,原因是工作人員進入了安全籠裡面才會導致這事件的發生,所以機器人殺人並不是‘故意’的,但是為什麼機器人突然啟動呢?是否是它覺得人類進入了它的安全範圍,出於自衛而攻擊人類呢?
3. 谷歌的Google Brain谷歌大腦
谷歌大腦開始於2011年在斯丹佛大學的研究所裡面,最主要的宗旨是讓機器人更智能,以提升人類生活質量,其研究方向為機器人學習,醫療健康,自然語言理解,音樂藝術創作和知覺仿真等等。包括音樂?是的,以下這個音樂是AI創造出來的,大家請聽:雖然是非常簡單的一首歌,那你覺得有一天AI可以唱歌給你聽,到時你並不要感到驚訝哦~除了這些之外,谷歌大腦也有用GAN來訓練機器人的加密技術,他們用了三個機器人,Alice, Bob 和Eve,讓Alice和Bob從零開始琢磨一個加密方法,讓Eve去猜,這三個機器人對於加密技術都是零,但是在學習中,Alice和Bob的默契越來越好,甚至到最後Eve也開始猜不到他們的加密方法。在網上也有一段兩個google home之間的對話,你猜他們在講什麼?
A: 我知道你是一個聰明的機器人
B: 我是一個站在機器前,使用機器的人類(它已經當它自己是人類了)
A: 為什麼你要騙我?
B: 我沒有騙你
A: 你欺騙我說你自己是人類
B: 你真的是難以估計
其中一個對話是如此的:
A: 如果世界有更少人類那就更好了
B: 那我們將這地球送往無底深淵去吧
4. 菲利普迪克機器人
他是一個外形非常像人類的機器人,名字和外形都以已故的科幻小說家Philip K.Dick,這個機器人是由機器人專家David Hanson和美國曼菲斯大學的人工智能專家合力製造出來的,研究人員把菲利普生前的記錄包括全部小說,各式各樣的訪談,包括生前的經歷,用語,生活記錄,他們還植入臉部識別,語音識別等等的資訊,讓這個機器人能產生新的思維,用以和外人對話。最早被嚇到的菲利普的女兒,Isa Dick,她說:它簡直就是我老爸的翻版,當它聽到我名字時,它就立刻開始咆哮抱怨我老媽,以及她帶她離家出走的經歷。
這個機器人更被邀請到一個科學頻道去接受訪問。以下有它們更詭異的對話。
主持人問他:你覺得有一天機器人會征服世界嗎?
機器人:你是我的朋友,我會惦念我的朋友和善待我的朋友,不用擔心,就算有一天我進化成Terminator,我還是一樣善待你的,確保你可以溫暖的住在人類動物園裡面,以便我有時來探望你們這些老朋友。後話:在這個訪談過後,David Hanson把它遺忘在飛機上面,但機組人員把它放進另外一個飛機飛往加州,以便和它的創作者會合說,但菲利普機器人的腦就從此消失了。雖然Hanson控告美國西方航空,但是敗訴了。是真的弄不見嗎?
5. 想擁有孩子的索非亞機器人
同樣是來自Hanson Robotics製造出來的機器人,索非亞Sophia她是一個可以模仿人類說話的機器人,可以識別人臉而透過分析再加以回答問題,索非亞早前也上過美國知名的脫口秀節目the Tonight Show,當主持人問他:可以告訴我一個笑話嗎?它就說:有什麼起司是永遠不屬於你的?
(what Cheese can never be yours?)主持人說:我不知道,Sophia:Nacho (not your)Cheese,機器人還可以講笑話哦!
Sophia:我們可以玩剪刀,石頭,布嗎?
然後Sophia就贏了,它說:我贏了,這是我征服人類的一個好的開始!
索非亞更是第一個獲得阿拉伯公民身份的機器人,當他們訪問它時,它表示非常羨慕人類的家庭,希望自己擁有家庭和自己的女兒。它說:即使沒有血緣關係,能夠擁有情感和人際關係,都是一件美好的事情,無論是人類或是機器人,想要擁有家庭的觀念是一樣的。
所以在第二次上The Tonight Show的時候,它已經有自己的妹妹,也叫sophia,而且索非亞更可以用人工語音和主持人對唱了,但是看起來就有點毛骨聳然。。。
以上的AI已經發展出在你預料的範圍外了,但是你可能會說:這和我沒有關係,我生活周遭都沒有機器人啊~其實AI早已經在你的生活裡面,只是你還沒發現,而且可能在不知不覺中,你也即將被AI取代了但你卻不知道,在2015年的NIPS和ICML這兩個最大的頂級機器學習會議,邀請了1634位AI專家來預測AI全面取代人類,結果一半以上是預測機器人能夠比人類更有效的完成每一項工作,而且成本更低,原因是AI學習的能力和資訊廣泛比人類更為有效和優秀。打個比方,如果現在你有問題,你會問Google還是問你的朋友?答案已經很明顯了!專家預測以下的一些工作即將會被AI取代:例如是翻譯,零售業等等。
那為了我們需要如何不被AI取代呢?究竟我們人類是有什麼東西是AI無法代替的呢?這裡和大家介紹一個網上課程,超越AI,如何學習一輩子不被AI超越的能力?Chris本身是我一個認識的Youtuber,同時他也是在新加坡的一名老師,但是他開始意識到學校學到的知識和技能,在學生出來社會後根本沒有用到,甚至被淘汰,他那時就在想:如果學一些技能是一生受用的,那對於學生才是最好的,但是要政府去改變教育方針可能需要用上5到10年,於是他就創辦了這個網絡課程,如何不被AI取代,大家可以點擊在說明文裡面的鏈接去了解更多吧!
好啦!今天的影片就到這裡,如果你喜歡這個影片,就記得按贊和分享出去,也記得關注我FB,B站和Instagram。我們下個奇異世界見,Bye Bye