#溫故知新 今天是薛丁格的生日,跟他同樣知名的,應該就是他的那隻貓了吧(咦)
薛丁格的貓常常出現在各式作品跟哏圖中,不過,到底這隻又生又死的貓跟薛丁格有什麼關係呢?
#薛丁格表示
#氣死
延伸閱讀:
萬物有沒有唯一解?愛因斯坦未完成的統一場論——《愛因斯坦的宇宙》
https://pansci.asia/archives/156257
照出黑洞不算什麼,科學家連量子纏結都能拍到!?
https://pansci.asia/archives/180461
量子糾纏研究的新突破:科學家成功讓量子糾纏的原子數打破紀錄!
https://pansci.asia/archives/flash/186149
————
全新計畫《科學生線上學習平台》問卷募集中!填答就有機會獲得精美好禮:https://crowdfundiing.typeform.com/to/CC8XFvbi
同時也有3部Youtube影片,追蹤數超過4萬的網紅呂冠緯 / 冠緯學長陪你學,也在其Youtube影片中提到,...
「原子數」的推薦目錄:
原子數 在 范琪斐的美國時間 Facebook 八卦
唯一戰勝 Google 旗下 Deep Mind 公司開發的人工智慧 AlphaGo 的南韓棋王李世乭,宣布將要退休,因為他認為人類永遠沒辦法擊敗人工智慧。
不過演算法不是只會越來越強大,為什麼 AlphaGo 會錯判輸給李世乭呢?
因為AlphaGo 有個叫『隨機森林』的算法,可以預測對手可能會下哪一步,但李世乭這一步下在 AlphaGo 認為對方不可能會去下的那一步,李世乭當時下完這步棋,Alphago 還認為自己的贏面超過八成,繼續往後下了十手之後,Alphago 自己有一個勝率的表,突然開始下降,發現自己處於弱勢了,開始慌張了,於是 Alphago 就開始亂下險棋,出現了連業餘選手都不會犯的錯,想賭李世乭會出錯,最後就輸了。
但 AlphaGo 也從敗給李世乭找到自身弱點,再次強化學習能力。像 AlphaGo 的孿生兄弟 AlphaGo Zero,就是完全不靠任何人類經驗訓練的神經網路,它就是不斷跟自己對戰學習,結果在自學 3 天後,就以 100:0 打敗了舊版 AlphaGo ,自學 40 天後,就擊敗了曾經戰勝中國棋手柯潔的 AlphaGo Master,成為世界上最強的圍棋程式!
雖然未來人類可能再也贏不過AI,不過AI 的加入反而讓圍棋有了更多玩法,這時候 AI 的功能,是在擴展人類棋手的思路,和人類合作一起探索圍棋還未被發掘的領域。
因為圍棋是世界上最複雜的遊戲!是看哪個顏色的棋子,圈出的空間最多,誰就獲勝。聽起來規則很簡單,但實際上卻複雜到不行。
圍棋的棋盤是 19X19,通常一步會有 200 種下法,圍棋變化位置的排列組合一共有10 的 170 次方種可能性,比整個宇宙的原子數10 的 80 次方還要多更多!人類通常都只能憑經驗跟感覺判斷,但判斷才是最困難的。剛有說嘛,圍棋的勝負是由最終局時,雙方控制地盤的多寡決定,但棋局進行到一半,雙方的地盤都還沒封閉,怎麽判斷形勢呢?很多職業棋手之間微妙的差異,就是體現在這個判斷能力上。
但就連開發 AlphaGo 的團隊都坦言,AlphaGo 面前的最大問題,和人類棋手是一樣的,就是圍棋太難了,還有規則中的規則,例如優勢、虧損、打劫,雖然 AlphaGo 的勝利或失敗,完全取決於這些機率的估計是否準確,但計算力還遠遠達不到『最優解』的程度。目前AlphaGo 團隊的做法是,讓AlphaGo學習像人類棋手一樣,去選點和判斷。
當機器把一件事情做得比人類好時,我們還能做什麼?
你對棋王退休有什麼看法?快和我們一起分享!
---------
《#范琪斐ㄉ寰宇漫遊》每週四晚間十點在寰宇新聞播出,沒跟上的也沒關係,歡迎訂閱我們的 YouTube 頻道 🔔#范琪斐ㄉ寰宇漫遊 🔔https://reurl.cc/ZvKM3 十點半準時上傳完整版!
原子數 在 范琪斐的美國時間 Facebook 八卦
唯一戰勝 Google 旗下 Deep Mind 公司開發的人工智慧 AlphaGo 的南韓棋王李世乭,宣布將要退休,因為他認為人類永遠沒辦法擊敗人工智慧。
不過演算法不是只會越來越強大,為什麼 AlphaGo 會錯判輸給李世乭呢?
因為AlphaGo 有個叫『隨機森林』的算法,可以預測對手可能會下哪一步,但李世乭這一步下在 AlphaGo 認為對方不可能會去下的那一步,李世乭當時下完這步棋,Alphago 還認為自己的贏面超過八成,繼續往後下了十手之後,Alphago 自己有一個勝率的表,突然開始下降,發現自己處於弱勢了,開始慌張了,於是 Alphago 就開始亂下險棋,出現了連業餘選手都不會犯的錯,想賭李世乭會出錯,最後就輸了。
但 AlphaGo 也從敗給李世乭找到自身弱點,再次強化學習能力。像 AlphaGo 的孿生兄弟 AlphaGo Zero,就是完全不靠任何人類經驗訓練的神經網路,它就是不斷跟自己對戰學習,結果在自學 3 天後,就以 100:0 打敗了舊版 AlphaGo ,自學 40 天後,就擊敗了曾經戰勝中國棋手柯潔的 AlphaGo Master,成為世界上最強的圍棋程式!
雖然未來人類可能再也贏不過AI,不過AI 的加入反而讓圍棋有了更多玩法,這時候 AI 的功能,是在擴展人類棋手的思路,和人類合作一起探索圍棋還未被發掘的領域。
因為圍棋是世界上最複雜的遊戲!是看哪個顏色的棋子,圈出的空間最多,誰就獲勝。聽起來規則很簡單,但實際上卻複雜到不行。
圍棋的棋盤是 19X19,通常一步會有 200 種下法,圍棋變化位置的排列組合一共有10 的 170 次方種可能性,比整個宇宙的原子數10 的 80 次方還要多更多!人類通常都只能憑經驗跟感覺判斷,但判斷才是最困難的。剛有說嘛,圍棋的勝負是由最終局時,雙方控制地盤的多寡決定,但棋局進行到一半,雙方的地盤都還沒封閉,怎麽判斷形勢呢?很多職業棋手之間微妙的差異,就是體現在這個判斷能力上。
但就連開發 AlphaGo 的團隊都坦言,AlphaGo 面前的最大問題,和人類棋手是一樣的,就是圍棋太難了,還有規則中的規則,例如優勢、虧損、打劫,雖然 AlphaGo 的勝利或失敗,完全取決於這些機率的估計是否準確,但計算力還遠遠達不到『最優解』的程度。目前AlphaGo 團隊的做法是,讓AlphaGo學習像人類棋手一樣,去選點和判斷。
當機器把一件事情做得比人類好時,我們還能做什麼?
你對棋王退休有什麼看法?快和我們一起分享!
---------
《#范琪斐ㄉ寰宇漫遊》每週四晚間十點在寰宇新聞播出,沒跟上的也沒關係,歡迎訂閱我們的 YouTube 頻道 🔔#范琪斐ㄉ寰宇漫遊 🔔https://reurl.cc/ZvKM3 十點半準時上傳完整版!
原子數 在 呂冠緯 / 冠緯學長陪你學 Youtube 的評價
原子數 在 許永清 Youtube 的評價
Periodic:A Game of The Elements 週期表元素桌遊
#Periodic:A Game of The Elements.
Fun and Educational as well.
Truly Awesome!
#好玩且極富教育性
這款桌遊實在不知道該從何下筆介紹,
所以遲遲直至今日才簡略地寫了這篇小心得!
我一定要先說結論,
結論就是,
玩了才會知道箇中好滋味!
而且,一定要跟化學專業的朋友們一起體驗!
因為這樣才能夠完全理解遊戲設計師的精心設計!
其實,體驗過後的那天下午,
內心就相當的激動,
激動到一直想要跟大家分享我內心的激動是什麼!
(繞口令沒錯!)
#原子量,
#原子數,
#原子半徑,
#元素特性 #NPK
要是化學專業的話,一定懂得我的明白!
原子數 在 范琪斐 Youtube 的評價
唯一戰勝 Google 旗下 Deep Mind 公司開發的人工智慧 AlphaGo 的南韓棋王李世乭,宣布將要退休,因為他認為人類永遠沒辦法擊敗人工智慧。
不過演算法不是只會越來越強大,為什麼 AlphaGo 會錯判輸給李世乭呢?
因為AlphaGo 有個叫『隨機森林』的算法,可以預測對手可能會下哪一步,但李世乭這一步下在 AlphaGo 認為對方不可能會去下的那一步,李世乭當時下完這步棋,Alphago 還認為自己的贏面超過八成,繼續往後下了十手之後,Alphago 自己有一個勝率的表,突然開始下降,發現自己處於弱勢了,開始慌張了,於是 Alphago 就開始亂下險棋,出現了連業餘選手都不會犯的錯,想賭李世乭會出錯,最後就輸了。
但 AlphaGo 也從敗給李世乭找到自身弱點,再次強化學習能力。像 AlphaGo 的孿生兄弟 AlphaGo Zero,就是完全不靠任何人類經驗訓練的神經網路,它就是不斷跟自己對戰學習,結果在自學 3 天後,就以 100:0 打敗了舊版 AlphaGo ,自學 40 天後,就擊敗了曾經戰勝中國棋手柯潔的 AlphaGo Master,成為世界上最強的圍棋程式!
雖然未來人類可能再也贏不過AI,不過AI 的加入反而讓圍棋有了更多玩法,這時候 AI 的功能,是在擴展人類棋手的思路,和人類合作一起探索圍棋還未被發掘的領域。
因為圍棋是世界上最複雜的遊戲!是看哪個顏色的棋子,圈出的空間最多,誰就獲勝。聽起來規則很簡單,但實際上卻複雜到不行。
圍棋的棋盤是 19X19,通常一步會有 200 種下法,圍棋變化位置的排列組合一共有10 的 170 次方種可能性,比整個宇宙的原子數ㄅ10 的 80 次方還要多更多!人類通常都只能憑經驗跟感覺判斷,但判斷才是最困難的。剛有說嘛,圍棋的勝負是由最終局時,雙方控制地盤的多寡決定,但棋局進行到一半,雙方的地盤都還沒封閉,怎麽判斷形勢呢?很多職業棋手之間微妙的差異,就是體現在這個判斷能力上。
但就連開發 AlphaGo 的團隊都坦言,AlphaGo 面前的最大問題,和人類棋手是一樣的,就是圍棋太難了,還有規則中的規則,例如優勢、虧損、打劫,雖然 AlphaGo 的勝利或失敗,完全取決於這些機率的估計是否準確,但計算力還遠遠達不到『最優解』的程度。目前AlphaGo 團隊的做法是,讓AlphaGo學習像人類棋手一樣,去選點和判斷。
當機器把一件事情做得比人類好時,我們還能做什麼?
你對棋王退休有什麼看法?快和我們一起分享!
---------
《#范琪斐ㄉ寰宇漫遊》每週四晚間十點在寰宇新聞播出,沒跟上的也沒關係,歡迎訂閱我們的 YouTube 頻道 🔔#范琪斐ㄉ寰宇漫遊 🔔https://reurl.cc/ZvKM3 十點半準時上傳完整版!
原子數 在 原子量分子量原子數分子數 - YouTube 的八卦
... <看更多>