🤓 น้องๆ รู้ไหมครับว่า computer vision
อ่านว่า "คอมพิวเตอร์วิชั่น"
เป็นศาสตร์ทางคอมชั้นสูงอีกแขนงหนึ่ง
ที่ทำให้คอมพิวเตอร์มองเห็นได้ดุจดังตามนุษย์
เป็นไงฟังแล้วเท่ห์มั๊ยละ
.
ปกติมนุษย์เวลาเห็นวัตถุ สิ่งของ สิ่งมีชีวิต อยู่ในรูป หรือในวีดีโอ
เช่น เห็นปูุ๊บก็จะบอกได้ทันทีว่า
ในรูปหรือวีดีโอมีหมา แมว แก้วน้ำ แจกัน ฯลฯ
เรื่องแบบนี้สำหรับคน ถือว่าโคตรรรรรรรรรง่ายๆ
.
แต่ทว่าในมุมของคอมพิวเตอร์
มันยากมากกกกกกกกกกกกกก
.
ถ้าคอมมันทำได้ก็ถือว่าฉลาดมากแล้ว
ถือว่า intelligent เป็นสิ่งอัจฉริยะในมุมของคอม
ซึ่งการแยกแยะว่าสิ่งที่อยู่ในรูปว่ามันเป็นอะไร
ภาษาอังกฤษเรียกว่า classification (แยกแยะประเภท)
.
สำหรับศาสตร์ computer vision 💻 💻
มันแตกแขนงได้หลายเทคนิค หลายสาย
แต่ในโพสต์นี้จะพูดถึงเฉพาะแค่ 2 เรื่อง เท่านั้นได้แก่
.
☑ 1) การทำ Object detection
เป็นการตรวจจจับวัตถุในรูป
ในมุมการ classification มันแค่บอกว่าสิ่งในรูปคืออะไร
แต่ Object detection จะไม่ใช่แค่บอกว่าสิ่งที่อยู่ในรูปคืออะไรเท่านั้น
.
😲 😲 มันเหมือนอัพเกรตจากความสามารถ classification
เพื่อพัฒนาไปตีกล่องสี่เหลี่ยมล้อมรอบ (ภาษาอังกฤษเรียกว่า Box)
ตีกล่องเพื่อบอกตำแหน่งสิ่งที่มันตรวจจับในรูปหรือในวีดีโอได้ ...โอ้วแม่เจ้าจะเทพไปถึงไหน
.
.
☑ 2) การทำ Segmentation
จะแอดวานซ์จาก Object detection
เหมือนเป็นเวอร์ชั่นอัพเกรตอีกต่อหนึ่ง
.
คือมันไม่ได้ตีกรอบล้อมรอบวัตถุนะ
แต่มันจะยิ่งกว่านั้น
...ก็คือมันจะไฮไลท์ (ฝรั่งบอกว่า mask)
....มันจะระบุพื้นที่วัตถุ สิ่งของ ที่มันตรวจจับได้ (เหมือนเราแรงงานไปยังวัตถุนั้น ๆ)
.
.
ซึ่งศาสตร์ computer vision ปัจจุบันนี้
นิยมเอา AI (ปัญญาประดิษฐ์) มาใช้งาน
จริงมันก็ทำอย่างอื่นได้นอกจากสองเรื่องที่ผ่าน เช่น
pose estimation ตรวจจับจุดต่างๆ ของมนุษย์ แบบกล่องสองผี 💀💀 💀 ....จนปรึ้นๆๆ น่ากลัวหรือเปล่า เป็นต้น
.
และมีข่าวดีสำหรับใครที่สนใจเขียนโปรแกรม 👏 👏
สำหรับงาน Object Detection กับ Segmentaion
ผมทำตัวอย่างการใช้งานไว้แล้ว
มี 5 แบบ ลองเข้าไปดูโค้ดได้ที่นี้
.
🔥 1. การช้งานไลบรารี่ imageai ตรวจจับวัตถุในรูป
https://colab.research.google.com/…/1uQnZfPlRhplvcZKWiXn1je…
🔥 2. การใช้งานไลบรารี่ pixellib ตรวจจับวัตถุในรูป
https://colab.research.google.com/…/1llWzReE3rS9wDfSGGm8M7R…
🔥 3. การใช้ไลบรารี่ Tensorflow ตัวอย่างของ Google ตรวจจับวัตถุในรูป
https://colab.research.google.com/…/12K-4uQ1tAvOukLb1-lwXx4…
🔥 4. การใช้ไลบรารี่ Detectron2 ของเฟสบุ๊ค ตรวจจับวัตถุในรูป
https://colab.research.google.com/…/1jnWFADFdZHz1LSyfXVKHY3…
🔥 5 ตัวอย่างการใช้โมเดล Msk RCNN ตรวจจับวัตถุในรูป
https://colab.research.google.com/…/1JGRIMQ1YSdMXkEZdC6QNGb…
.
ปล. มีแต่โค้ด python เพราะต้องทำใจอะนะ
เพราะงานด้านนี้ ภาษานี้คืออันดับหนึ่งในงาน AI ณ ห่วงเวลานี้
(สามารถไปอ่านตำราเรียน ม.1-2-3 มีเนื้อหา python อยู่ในตำรา)
.
.
+++++ขอประชาสัมพันธ์ (ขายของ)
📔 หนังสือ "ปัญญาประดิษฐ์ (AI) ไม่ยาก" เข้าใจได้ด้วยเลขม. ปลาย (เนื้อหาภาษาไทย)
.
ถ้าสนใจสั่งซื้อเล่ม 1 ก็สั่งซื้อได้ที่ (เล่มอื่นๆ กำลังทยอยตามมา)
👉 https://www.mebmarket.com/web/index.php…
.
ขออภัยยังไม่มีเล่มกระดาษจำหน่าย มีแต่ ebook
.
ส่วนตัวอย่างหนังสือ ก็ดูได้ลิงค์นี้
👉 https://www.dropbox.com/s/fg8l38hc0k9b…/chapter_example.pdf…
.
✍เขียนโดย โปรแกรมเมอร์ไทย thai programmer
🤓 Do you know that computer vision?
Read ′′ Computer Vision ′′
It's another elite computer science.
That makes computers visible as human eyes.
How are you? Are you cool?
.
Normally humans see objects of living things in the photo or video.
Such as seeing a crab, I can tell you right away.
In the picture or video, there are dogs, cats, mug, vase etc.
This kind of thing for people is considered simple.
.
But in the corner of computer
It's very difficult.
.
If a computer can do it, it's very clever.
Intelligent is considered genius in the corner of the computer.
Which digest what's in the picture is what it is.
English is called classification (type digest)
.
For computer vision science 💻 💻
It's broken. Many tricks. Many lines.
But in this post, it's only about 2 stories.
.
☑ 1) Object detection
Detection of the objects in the photo
In classification angle, it just says what is in the picture.
But Object detection won't just say what's in the picture.
.
😲 😲 It's like an upgrade from ability classification.
To develop, hit a square box, surround (English is called Box).
Hit the box to spot what it detects in the photo or video... Oh my god how can it be?
.
.
☑ 2) Making Segmentation
Will admin from Object detection
It's like another upgrade version.
.
Well, it doesn't hit the frame surrounding the object.
But it will be more than that.
... Well, it's going to be highlighted (Foreigner says mask)
.... It will identify the areas, objects, things that they detect (like we labor to that object).
.
.
The science of computer vision nowadays.
Popular to use AI (Artificial Intelligence)
True, it can do anything else but two things that pass, e.g.
pose estimation detects different points of human in two ghost box. 💀💀 💀 💀 💀.... so bad, scary, etc.
.
And some good news for anyone who is interested in programming 👏 👏
For Object Detection with Segmentaion
I made an example of use.
There are 5 designs. Check out the code here.
.
🔥 1. Imageai library work. Detection of objects in the photo.
https://colab.research.google.com/drive/1uQnZfPlRhplvcZKWiXn1jeytJIFEVLkV
🔥 2. usage of pixellib libraries. Detect objects in the photo.
https://colab.research.google.com/drive/1llWzReE3rS9wDfSGGm8M7RQ25jeEfSIi
🔥 3. uses of Tensorflow's Tensorflow library. A sample of Google detects objects in the photo.
https://colab.research.google.com/drive/12K-4uQ1tAvOukLb1-lwXx4bnXkeQupTk
🔥 4. Facebook's Detectron2 Library Uses rūp Objects Detector
https://colab.research.google.com/drive/1jnWFADFdZHz1LSyfXVKHY3fIwuY5F_uo
🔥 5 examples of using Msk RCN model. Detect objects in the photo.
https://colab.research.google.com/drive/1JGRIMQ1YSdMXkEZdC6QNGbI722tEQJTE
.
Ps. There are only code python because I need to get over it.
Because of this side job, this language is number one in AI event. At this time, I'm
(Can go to read textbooks. 1-2-3 python content in the textbook)
.
.
+++++ Public relations (selling items)
📔 The book ′′ Artificial Intelligence (AI) is not difficult It can be understood by the number. Tipping (Thai language content)
.
If you are interested in ordering book 1, you can order at (other books are gradually following).
👉 https://www.mebmarket.com/web/index.php?action=BookDetails&data=YToyOntzOjc6InVzZXJfaWQiO3M6NzoiMTcyNTQ4MyI7czo3OiJib29rX2lkIjtzOjY6IjEwODI0NiI7fQ&fbclid=IwAR11zxJea0OnJy5tbfIlSxo4UQmsemh_8TuBF0ddjJQzzliMFFoFz1AtTo4
.
Sorry, no paper books available. Only ebooks.
.
Personal like the book. You can see this link.
👉 https://www.dropbox.com/s/fg8l38hc0k9b0md/chapter_example.pdf?dl=0
.
✍ Written by Thai programmer thai coderTranslated
同時也有5部Youtube影片,追蹤數超過11萬的網紅TourbillonCafe,也在其Youtube影片中提到,長らく会えてなかった娘が東京から遊びに来てくれた。 8時から23時まで丸一日、娘とのデートをGH4で収めました。...
「angle classification」的推薦目錄:
- 關於angle classification 在 โปรแกรมเมอร์ไทย Thai programmer Facebook
- 關於angle classification 在 TourbillonCafe Youtube
- 關於angle classification 在 TourbillonCafe Youtube
- 關於angle classification 在 TourbillonCafe Youtube
- 關於angle classification 在 MALOCCLUSION | ORTHODONTICS | 5 min DENTISTRY 的評價
- 關於angle classification 在 4th grade geometry angle classification 2 - Pinterest 的評價
angle classification 在 TourbillonCafe Youtube 的評價
長らく会えてなかった娘が東京から遊びに来てくれた。
8時から23時まで丸一日、娘とのデートをGH4で収めました。
angle classification 在 TourbillonCafe Youtube 的評價
カメラ機材強化第一弾!
私なりの単焦点レンズを選ぶ考え方を語ります♪
〜関連動画〜
■Samyang 7.5mm f3.5 UMC FISH EYE MFT (前編) 〜魚眼は楽しいぞマジで!!
http://youtu.be/T0VowVRPtbk
■Panasonic Lumix GH4 曇天の淀屋橋をプラプラしてきた♪
http://youtu.be/aGKO_PHR994
■撮影機材
Panasonic Lumix GH4
RODE NT-USB
■編集ソフト
iMovie'11
■使用音源
・YouTubeオーディオライブラリ
・フリーBGM・音楽素材MusMus
http://musmus.main.jp/
■アンソニーのTwitter
@antoine1973
お気軽にフォローしてください♪
angle classification 在 TourbillonCafe Youtube 的評價
魚眼はマジで楽しい!!
オープニングの20秒だけでも見てください!!
■amazon購入ページ
http://amzn.to/1vt5LT2
〜後編はこちら〜
⇒Samyang 7.5mm f3.5 UMC FISH EYE MFT (後編) 〜1本持っといて損はしない3万円で買える魚眼レンズ!
http://youtu.be/fDOhlY3AVVk
angle classification 在 4th grade geometry angle classification 2 - Pinterest 的八卦
There are a range of worksheets to help children learn to classify angles and measure angles using a protractor. ... <看更多>
angle classification 在 MALOCCLUSION | ORTHODONTICS | 5 min DENTISTRY 的八卦
Before starting to learn orthodontics, it is a must to know the basics of Angle's classification of malocclusion. This video will help you ... ... <看更多>