為你而來,未來已來!高雄見
2018韓流興起,民眾思變的心改變了全台灣⋯
因為思變,所以高雄有了韓國瑜的出線;
因為思變,所以給了游淑慧和許多新人們機會。
去年,韓市長舉起了我們許多人的手,讓我們有機會踏入公眾服務領域。
今年,換我們眾志成城,一起改變台灣,下架肥貓滿朝的14黨!
選前騙選票,
選後搞鈔票,
一朝人民醒,
下架惡政權!
台灣,有你真好
https://youtu.be/7hK0wUTtBdI
#游淑慧官方頻道 Youtube連結:
https://reurl.cc/qD6kkN
#2好3壞 滿球數,1月11日,關鍵一球,等你來投!
#還沒被允許開手機直播,拜托大家幫淑慧衝訂閱數🙏🙏🙏🙏
同時也有10000部Youtube影片,追蹤數超過62萬的網紅Bryan Wee,也在其Youtube影片中提到,...
「2好3壞滿球數」的推薦目錄:
- 關於2好3壞滿球數 在 游淑慧 台北市議員 Facebook
- 關於2好3壞滿球數 在 游淑慧 台北市議員 Facebook
- 關於2好3壞滿球數 在 游淑慧 台北市議員 Facebook
- 關於2好3壞滿球數 在 Bryan Wee Youtube
- 關於2好3壞滿球數 在 Travel Thirsty Youtube
- 關於2好3壞滿球數 在 スキマスイッチ - 「全力少年」Music Video : SUKIMASWITCH / ZENRYOKU SHOUNEN Music Video Youtube
- 關於2好3壞滿球數 在 [外電] 賽局棒球選球篇- 看板MLB - 批踢踢實業坊 的評價
- 關於2好3壞滿球數 在 兩出局滿壘,兩好三壞滿球數,克拉帝K掉王勝偉化解失分危機 的評價
- 關於2好3壞滿球數 在 兩出局兩好三壞滿球數,張建銘揮棒落空,猛雷特送出第9K 的評價
- 關於2好3壞滿球數 在 [問題] 保送後還得分是哪招= = - 全民打棒球- BBO | PTT遊戲區 的評價
2好3壞滿球數 在 游淑慧 台北市議員 Facebook 八卦
新年快樂!!
大家今晚要怎麼跨年呢?
很遺憾2019年的最後一天,民進黨用違反正常的立法程序的方式,強行通過了反滲透法⋯⋯
今晚 8:00有空的朋友,我們一起線上度過2019年的最後一晚!❤️❤️
#游淑慧官方頻道 Youtube連結:
https://reurl.cc/qD6kkN
#2好3壞 滿球數,1月11日,關鍵一球,等你來投!
#2020拜托大家繼續幫淑慧衝訂閱數🙏🙏🙏🙏
2好3壞滿球數 在 游淑慧 台北市議員 Facebook 八卦
新年快樂!!
大家今晚要怎麼跨年呢?
很遺憾2019年的最後一天,民進黨用違反正常的立法程序的方式,強行通過了反滲透法⋯⋯
今晚 8:00有空的朋友,我們一起線上度過2019年的最後一晚!❤️❤️
#游淑慧官方頻道 Youtube連結:
https://reurl.cc/qD6kkN
#2好3壞 滿球數,1月11日,關鍵一球,等你來投!
#2020拜托大家繼續幫淑慧衝訂閱數🙏🙏🙏🙏
2好3壞滿球數 在 Bryan Wee Youtube 的評價
2好3壞滿球數 在 Travel Thirsty Youtube 的評價
2好3壞滿球數 在 スキマスイッチ - 「全力少年」Music Video : SUKIMASWITCH / ZENRYOKU SHOUNEN Music Video Youtube 的評價
2好3壞滿球數 在 兩出局滿壘,兩好三壞滿球數,克拉帝K掉王勝偉化解失分危機 的八卦
09/19 兄弟vs 義大二局上,兩出局滿壘,兩 好三壞滿球數 ,克拉帝K掉王勝偉化解失分危機. ... <看更多>
2好3壞滿球數 在 兩出局兩好三壞滿球數,張建銘揮棒落空,猛雷特送出第9K 的八卦
07/10 Lamigo vs 義大七局下,兩出局兩 好三壞滿球數 ,張建銘揮棒落空,猛雷特送出第9K. ... <看更多>
2好3壞滿球數 在 [外電] 賽局棒球選球篇- 看板MLB - 批踢踢實業坊 的八卦
https://tinyurl.com/bbnbxon
這篇是#1HGejszv abc12812 □ [情報] 賽局理論看配球/選球 的其中一個連結
內容有一些名詞我可能會加上自己的註解並標示
會翻大意而非逐字翻譯
有錯請鞭
以下翻譯開始
-------------------------------------------------------------------------------
這篇文章是關於應該是賽局理論在棒球上最重要的應用--選球
我之後還會利用好幾篇文章從不同的角度模擬選球的策略
不過今天我們用最簡單的方式來進行
顯然要把選球轉化成一個數學問題需要做非常多的假設、省略
不過我們只要做一點很簡單的假設就可以發現目前投打雙方明顯並沒有
採用最佳的策略在打球.
如果你曾聽過球評在球賽中表示他知道現在這局面"應該"要投什麼球
他一定有哪裡搞錯了...
如果打者"確定"下一球是什麼球,他一定會因此而做出應對.
如果球評猜的到下一球是什麼球,對手也一樣可以猜.
尤其是----兩好球的時候你經常聽到球評得意洋洋的說
"這時候應該投手應該投開一點誘使打者追打壞球"
如果投手總是不投進好球帶的話,打者就站在那邊什麼都不做
不就可以免費得到一個壞球...
所以事實是投手當然有時還是會投進好球帶
所以你打者會去打挖地瓜的球也不是怪事
現實中我們所看到的,打者和投手都會讓他們的戰術選擇具有隨機性不被對手輕易看穿,
雖然在無數的戰術組合中,我們最後真正看到的結果只會有其中一種....
Dominant Strategies
(譯者註: 假設我有好幾種選擇A,B,C..., 並且我有一個選擇A是不管對手怎麼應對,
我得到的結果都一定不會比我做其他選擇差,那A就稱作我的Dominant Strategy.)
當然,有時候球場上也是存在著dominant strategy的...
例如說一個普通的打者面對3-0的球數
在2012年,選擇在3-0時出擊的打者有著0.39的wOBA
但一旦球數變成3-1, 那麼他在3-1(和可能的3-2)總共加起來wOBA是0.417..
當然數據選擇上可能有點偏差,但是這似乎顯示打者似乎在3-0時在等一顆球較好?
這算是個簡單的例子 讓我們來分析看看:
從打者的觀點來看 雙方的選擇共可能產生四種結果 從優到劣排序:
(從投手觀點來看 優劣順序就是反過來)
投手選擇 / 打者選擇
(a)壞球 / 不打
(b)好球 / 不打
(c)好球 / 打
(d)壞球 / 打
我們不如假設(a)-(d)對於打者於這個打席的獲益分別是4,3,2,1 對於投手是-4,-3,-2,-1
那麼列成表:
----------------------------------------
投手\打者 | 打 | 不打
----------------------------------------
好球 | -2,2 | -3,3
----------------------------------------
壞球 | -1,1 | -4,4
----------------------------------------
經過簡單的計算,我們可以發現打者的最佳策略顯然是不打,那麼投手的最佳策略
也因此是好球.
所以打者絕對不打,投手試圖把球投進好球帶.
不過現實生活中,你要打者完全放棄這球,挑戰投手是否能把球投進來讓裁判舉手
好像不太容易? 要解釋這個平衡點的存在,大致上可以說即使球數被逼入3-1,3-2
投手在途中可能投出壞球的好處還是比讓你的球數優勢被慢慢搶回的缺點來的大
Mixed Strategies in Full Counts
(譯者註: Mixed Strategies(混合策略) 現在假設打者並不是只有"打" 或"不打"
兩種選擇,而是可以決定"多少機率要打"和"多少機率不打",投手也是一樣,
那麼就成了Mixed Strategies,組合就從四種變成無限多種了,但還是可以做分析)
上面那個例子有著dominant strategy,其實不太常見.
大部分的時候,該如何選球都得靠mixed strategy解決.
讓我們來看看滿球數(3-2)時的情形:
如果投手投出壞球,打者不打比較好(假設他揮了大概就被三振),
如果投手投出好球,打者打比較好(假設他沒揮大概就站著三振)
所以我們假設本打席 雙方的獲益表長這個樣子: (對應原文Table 2)
----------------------------------------
投手\打者 | 打 | 不打
----------------------------------------
好球 | -1,1 | 1,-1
----------------------------------------
壞球 | 1,-1 | -1,1
----------------------------------------
顯然雙方都沒有dominant strategy
經過了一些計算後(譯者註:其實這題作者數字用的太對稱了就算你根本沒學過賽局
也猜的到大概答案是中心點之類的),
可以得知雙方的最佳策略是
打者: 50%打 50%不打
投手: 50%好球 50%壞球
雙方的期望值都是0 任何一方片面更改他的策略都對自己沒有好處
(譯者註: 你可能開始懷疑用假設過的數字算出這個結論要做啥?
他的主旨是: 比較2-2 和3-2 的選球策略,真正50%這個數字其實不是重點
所以請耐心看完最後一段就知道囉)
Mixed Strategies in 2-2 Counts
我們不太知道實際上一題每個情況雙方的報酬期望值是多少,所以當然也不能斷定
打者和投手最佳策略就是50%好球/打... 不過讓我們和2-2的情形做個比較
讓我們對2-2的各個情況作出假設吧!
2-2時如果你對好球揮棒,那麼期望值和3-2對好球揮棒是一樣的---都是三振
或是你碰到球了,2壞還是3壞沒什麼差.
2-2時如果你對壞球揮棒,那麼期望值和3-2對壞球揮棒是一樣的---都是三振
2壞還是3壞沒什麼差.
2-2時如果你對好球不打,那麼期望值和3-2對好球不打是一樣的---都是三振
2壞還是3壞沒什麼差.
唯一的差別就是你對2-2時的壞球放過---那你就會變成3-2
根據上一題 3-2的期望值算出來是0 記得嗎?(我們既然要比較兩個結果,
那至少兩題的假設要互相吻合)
好! 所以可以列表了!
Table 3
----------------------------------------
投手\打者 | 打 | 不打
----------------------------------------
好球 | -1,1 | 1,-1
----------------------------------------
壞球 | 1,-1 | 0,0
----------------------------------------
根據計算,雙方的最佳策略是打者1/3打,2/3不打 投手1/3好球,2/3壞球
也就是說---比起滿球數
投手在2-2時投進好球帶的機率應該更少些---這好像蠻符合現況的
但
打者在2-2時揮棒的機率也應該更少些! -- 這好像就有點意思了,似乎打者
在3-2時因為覺得比較有希望保送反而比較常不揮棒
這個例子顯示目前打者的選球策略並非最佳 他們應該在3-2時更常揮棒
(因為投手也更想投進去) 在2-2時應該更小心選球
下一篇我們將考慮投手投球的品質、和有特殊球路的投手是否應該採取特殊的策略
結果可能也讓你很吃驚噢。
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.7.214
感覺就是不合我的胃口
所以就姑且當成是我自己解釋這個名詞的方法好了 不要當成是唯一的中文翻譯比較好^^"
※ 編輯: autumned 來自: 118.168.59.223 (03/16 20:04)
是明明想投也投不進去) 應該是我沒翻譯進去 不好意思^^"
※ 編輯: autumned 來自: 118.168.59.223 (03/16 21:37)
所以才能馬上得知打者不打的時候 投好球是最佳策略
※ 編輯: autumned 來自: 118.168.59.223 (03/16 22:03)
Table 3
----------------------------------------
投手\打者 | 打 | 不打
----------------------------------------
好球 | -1,1 | 1,-1
----------------------------------------
壞球 | 1,-1 | 0,0
----------------------------------------
假設打者打的機率是q 不打1-q
投手投好球的機率是p 壞球1-p
那麼打者揮擊的期望值V(s)是? 現在暫時不知道 因為我們也不知道p是多少
所以暫且以p的函數表示
V(s) = (1)*(p) + (-1)*(1-p) = 2p – 1
打者不打的期望值V(t)也可以用p表示
V(t) = (-1)*(p) + (0)*(1-p) = -p
以此類推 投手投好球的期望值V(g) (對投手而言)
V(g) = (-1)*(q) + (1)*(1-q) = 1 – 2q
投手投壞球的期望值V(b)
V(b) = (1)*(q) + (0)*(1-q) = q
所以 如果 1-2q > q --- 也就是說 q < 1/3, 投手會比較想投好球
q > 1/3 他比較想投壞球 q = 1/3 的話怎樣都沒差
打者而言 2p-1 > -p --- 也就是說 p > 1/3的話他比較想揮
p < 1/3 他想放過
p = 1/3 就沒差
惟一的equilibrium 發生在p = q = 1/3 就是打者1/3揮 投手1/3投好球的時候
(註:原文算式 2p – 1 > -p 的地方 -p的負號不見了 這裡已補回)
※ 編輯: autumned 來自: 118.168.59.223 (03/16 22:21)
※ 編輯: autumned 來自: 118.168.59.223 (03/16 23:52)
... <看更多>