近幾個月,在AI賦能未來醫療的思考特別多,受美國「WIRED連線」雜誌邀請撰寫了一篇專欄文章。我相信十幾年後,不少國家和地區的醫療體驗在AI賦能的作用下將發生根本性改變。
原文刊於「WIRED連線」雜誌英文官網:
Covid-19 Will Accelerate the AI Health Care Revolution
https://www.wired.com/story/covid-19-will-accelerate-ai-health-care-revolution/
中文翻譯來自創新工場微信公眾號 2020-5-22
新冠大流行將加速醫療AI革新
—————————————
2020年元旦前夜,一家位於加拿大多倫多市的人工智能(AI)企業BlueDot捕捉到一些異常:中國武漢市海鮮市場周邊出現多起罕見肺炎病例,BlueDot迅即反應,運用自然語言處理、機器學習等技術,結合大數據和定位追踪,迅速向合作的政府部門和公共衛生機構客戶傳送警報並報告擴散狀況。BlueDot所監測到的異狀,正是數月後撼動全球的新型冠狀病毒肺炎(Covid-19),這比世界衛生組織首度公開警示新冠病毒的時間還要早上9天。
BlueDot的AI平台示範了人工智能技術對重大疫情能起到早期預警的功用,過去幾個月裡,AI在這場全球抗疫戰的許多方面發揮了獨特作用:從疫情預測到篩檢,從接觸警示到快速診斷,從前線無人配送到實驗室藥物研發,人工智能助力防疫派上了不少用場,為特定場景應用賦能。
隨著疫情在全球蔓延,AI技術的創新應用也在各地相繼落地。在韓國,基於地理位置的信息傳遞已經成為控制病毒傳播的重要工具,當人們靠近確診病例時,就會收到基於位置的緊急信息提醒。在中國大陸,阿里巴巴推出的AI算法能夠在20秒內診斷出疑似病例(比人類檢測快了近60倍),準確率高達96%。無人配送車輛很快被投入到人類難以承受的場景,代替人類執行高傳染風險的運輸任務。湖北、廣東等省份的多家醫院相繼使用機器人為病人或被隔離家庭運送食物、藥品和物資。而在美國加州,電腦科學家正在研發能遠程檢測獨居老人健康情況的系統,一旦老人出現身體異常症狀,系統就會發出即時警報。
不過,目前人工智能在公共衛生體系的應用仍顯零散也未成體系。坦率說,過去四個月內,AI在抗疫之戰中的表現並不十分突出,我最多只能給它打分“B-”。新冠大流行暴露了我們的醫療系統的脆弱性:預警響應不充份、通報信息不精確、醫療物資分配不均、醫務人員超負疲憊、醫院病床緊繃、疫苗研發週期長等諸多痛點。當然,AI的零散表現也有客觀原因:醫療體系可說是現代社會各類運轉體系中最為複雜、陳舊不堪且難以變通的一種;且在新冠疫情襲來之前,我們並沒有真正意識到醫療體系問題的緊迫性,沒有提前採取相應的技術預防措施;最為關鍵的是,我們缺少建構AI解決方案所需的大數據。
把目光看向未來,我看到以下兩個AI賦能醫療的樂觀因素。
首先,作為AI燃料的醫療大數據已被激活。舉例來說,機器學習數據科學平台Kaggle組建了新冠病毒開放研究數據庫,名為CORD-19。它將相關數據進行彙編,並把最新研究集中收錄,匯總的格式可被機器讀取和解析,以便於AI進行機器學習。至今這個數據庫收錄了12.8萬篇包含Covid-19、冠狀病毒、SARS(非典型肺炎)、MERS(中東呼吸綜合症)等關聯術語的醫學專業學術文章。
其次,眼下全世界的醫學專家和電腦科學家都將精力集中在解決疫情問題。 X大獎基金會創始人彼得·戴曼迪斯(Peter Diamandis)估計,全球現在有多達兩億名的醫師、科學家、護士、技術專家和工程師投入防治冠狀病毒的相關研發中,他們正在進行數以萬計的實驗,並以「前所未有的透明度和速度」共享信息。
3月16日Kaggle發起「新冠病毒研究挑戰」,匯集與疫情相關的大量信息,包括病毒的自然歷史、傳播和診斷方法、以及從過往流行病學研究中汲取的經驗教訓,幫助全球各地衛生機構及時掌握最新情況,以做出基於數據的分析決策。該項目發布後的五天內被瀏覽超過50萬次,下載量逾1.8萬次。在大陸疫情爆發後不到一個月,阿里巴巴便推出了一種AI算法,該算法基於5000多個新冠肺炎確診病例進行訓練,並關聯到治療後續諸如肺部白色陰影縮小等的成效追踪。隨後,阿里巴巴將其云端AI平台向全球醫療專業人員開源,與合作夥伴聯手部署更大批量的匿名數據,推出包括疫情預測、CT影像分析、冠狀病毒基因組測序等模組。
據估計,現今全球醫療數據的規模每隔幾個月就翻一倍。 2019年一份覆蓋19個國家AI醫療市場的研究估計,AI醫療市場的年複合增長率為41.7%,從2018年的13億美元將增長至2025年的130億美元,主要分佈在六大領域:醫院工作流程、可穿戴設備、醫學影像和診斷、診療計劃、虛擬助手、以及最重要的藥物研發,新冠疫情期間浮現的種種需求,將加速AI賦能醫療的場景落地。
在後疫情時代,我期待AI將加速融入醫療體系,賦能並推動醫療改革。其中深度學習(Deep Learning),即以一種高效方法運算海量、多維數據的能力,是AI結合醫療最為可期的機遇之一。深度神經網絡(Deep Neural Networks)作為AI的一個子領域,已經被用於醫學掃描、病理切片、眼科檢查甚至結腸鏡檢查,以得出準確而快速的算法判讀。十幾年後,不少國家和地區的醫療體驗在AI賦能的作用下將發生根本性改變。
AI賦能醫療,首先能簡化及優化現有的醫療流程,例如醫院的作業流程,保險履約的繁複流程。將AI與RPA(Robotic Process Automation 機器人流程自動化)結合,可對某項工作流程進行智能拆解及優化,進而大大提高醫療系統的運營效率,預約看診、保險理賠及其他流程性工作都會得到效率提升。AI還能加快早期診斷信息的收錄並實現自動化,AI技術所能處理的文本、語言、數字的體量,無論在數量上還是精度上都是機器級別,遠非人類所及。
有了充份的醫療大數據作為基礎,AI還能為每個人或者每個群體建立健康數據基準量表。當我們掌握個體健康數據,就可以根據跟踪動態數據的波動變化,進行數據驅動的診斷,並對潛在大流行疾病的徵兆進行早期追踪研判。然而,再先進的技術系統要做到真正有效,勢必需要與既存的公共衛生警示和匯報機制形成高效鏈接,此類信息斷層即是新冠疫情在早期爆發期間存在的具體缺失。
再上一個層次的AI賦能體現在助力新藥研發、基因組測序、幹細胞、CRISPR(基因編輯)等醫學突破方面,AI模型和算法應用都有其用武之地。在製藥行業,研發一種新藥往往需要付出高昂的投入,某次成功前必有多次付諸流水的失敗試驗,也連帶消耗巨大的時間和金錢成本。現在,科學家們可使用AI機器學習來模擬上千個變量,測試它們的複合效應會對人類細胞反應產生何種影響,這類AI新藥研發的技術已被用於新冠病毒疫苗和其他療法。創新工場所投資總部位於香港的AI藥物研發公司Insilico Medicine是首批對新冠病毒快速響應的企業之一,這家公司利用生成式化學AI平台設計出新藥物小分子,以複製主要病毒蛋白為靶標,早在2月5日便公佈了這些小分子結構。 AI為新藥發明開闢了一個新時代,用人工智能技術來換取藥品研發週期的時間和成本,整個製藥行業勢將迎來翻天覆地的變革。
不久的將來,隨著醫療科學和電腦科學進一步融合,我們將進入一個全面自動化的AI時代,到時人們可以通過可穿戴設備、生物傳感器、智能家居檢測設備等來確保自身和家人的健康。可穿戴設備和其他物聯網設備的數據質量和多樣性大幅提高,將能產生一個有效的良性循環。穿越到未來,下一場疫情在大範圍蔓延之前就應該能夠被跟踪、追溯、攔截並消滅無踪。
或許再過15年,許多人的家裡都會有AI個人助理照料我們,幫著解決全家人的日常健康所需。機器人或者無人機負責把我們的藥品送上門,如果需要進行手術或者外科治療,通常會由機器人操作,或由機器人輔助人類外科醫師完成。在未來,醫生和護士將把更多的精力放在機器無法勝任的任務上,醫療專業人員及富有同情心的護理人員,將同時具備護士、醫療技師、社會工作者、甚至心理諮詢師的技能。他們會使用經AI強化的診斷工具和系統,但更多的時間會與患者溝通,安撫他們的傷痛,為他們提供情感扶持。在我的想像裡,15年後的醫療健康場景可能是這個樣子的:
***
2035年一個冬季早晨,我醒來後就覺得有點喉嚨痛。我起身去洗手間,刷牙的時候,洗手間的鏡子通過紅外傳感器測量了我的體溫。刷完牙後一分鐘,我的私人AI醫師助理發出了警報,顯示我的唾液樣本部分指數異常,並在輕微低燒。 AI醫師助理建議我在家進行指尖探針採血。我在泡咖啡時,醫師助理返回了分析結果,判斷我可能是得了這個季節正在流行的兩型流感其中一種。之後,我的AI醫師助理建議,如果我覺得有必要聯繫家庭醫生的話,有兩個時間空檔可以跟她視頻通話。通話之前,家庭醫生已經收到我所有症狀的詳細信息,她給我開了一種減充血劑和撲熱息痛,一會兒無人機就把藥品送到我家門口。
***
當然,凡涉及到患者的醫療記錄,就得談談隱私和數據保護的關鍵問題。我認為,任憑有用的數據各自孤島式的存在、不善加利用、不從中提煉有價值的信息、不用以推動社會進步,是相當不負責任的做法。技術產生的問題應該由技術解決。隨著AI技術浪潮而出現的諸如數據保護等問題,應該有更為創新的技術方法來應對。
好消息是,近年聯邦學習(也被稱為分佈式學習)已經在數據保護上取得了顯著的進展。基於聯邦學習技術,患者的數據將永遠不會離開所在的醫療機構、醫院或個人設備伺服器等原始存儲設備,機器學習模型將在獨立的數據庫基礎上進行訓練處理,再進行後續整合。聯邦學習、同態加密,結合可信硬體執行環境等技術,將進一步確保數據的計算、傳輸、存儲過程能夠適配不同的隱私偏好,以因應不同國家與文化對於隱私保護的需求差異。
這次新冠肺炎疫情還驗證了一個事實:整體人類命運是共同體,人們對未來運用AI等先進技術共度難關寄予一致的期盼。歷史上,國際合作曾消滅了全球延燒的天花,也幾乎根除了小兒麻痺症。公共衛生無國界,控制及消除流行病是個毋庸置疑的共同目標。在醫學領域,每個國家都能從他國的研究基礎上學習受益並攜手並進,全球化的數據科學,將進一步幫助人類獲取對健康和疾病最為深刻、最為全面的洞悉。
AI有潛力協助我們為下一次疾病大流行做更充份的準備。這需要醫學專家、AI科學家、投資者和決策者傾力協作,也需要關注醫療保健領域的投資人為聰明的創業者和科學家注入新一波動能。
經歷這次疫情,我們應清醒地意識到,要將人類醫療體系推往新的高度,著實需要傾盡全球之力。
創新工場董事長兼首席執行官
李開復博士
工程保險追溯 在 項明生 James Hong Facebook 八卦
【日本第一】
今年日本舉國歡慶明治維新一百五十周年,標誌新日本的誕生。明治維新,是亞洲史上第一次全面西化的運動,天翻地覆的變化,誕生了很多新奇的事物,影響至今。為了拍攝今周日首播的《明治憑甚麼》,我捐窿捐罅, 發掘出三十多樣有趣的日本第一,遍佈今天東瀛生活的衣、食、住、行!
例如日本第一間洋食料理餐廳,自由亭有二十四小時滴漏而成的咖啡,配長崎文明堂Castella!日本第一條馬路,上面有第一個瓦斯燈、日本第一間雪糕店!日本第一間株式會社,原來是龍馬用來走私軍火?
去日本第一間民營小岩井農場,食牛奶拉麵!日本第一個水利工程,為甚麼修在了一間古廟中?仲有日本第一個公園、第一間博物館、第一間銀行、第一個西式城堡、第一間河豚料理店、等等。
我去了日本第一間牀屋(髮型屋)喜多牀,找五代目Set番一個明治髮型、去明治時代開張的高橋洋服店度身試穿日式西裝Sebiro、還試揹明治流行至今的日式書包Randoseru!
明治天皇帶頭食牛肉,於是Sukiyaki、鐵板燒、牛肉飯大行其道,到和魂洋才的土耳其飯、桌袱料理、日式蛋包飯、日式炸豬排、火車便當、等等,令人流晒口水!追溯日本第一個啤酒的來源、揚名國際的日本威士忌,日本的咖啡文化源頭,去日本第一間咖啡廳Paulista Café喝咖啡!
我還試拉明治二年發明的人力車,登上明治五年開通的蒸汽火車、到古靈精怪的馬拉火車、人拉火車, 追蹤明治維新帶來的交通變化。首集前往偏遠九州的薩摩藩,今天的鹿兒島。當年藩主叫島津齊彬, 對西方科學有莫大興趣,偷偷地開展了一場迷你的明治維新演習!
今日 頭條日報 專欄:http://hd.stheadline.com/news/columns/221/20181026/712411/
#頭條日報 #非誠勿游 #項明生 #明治憑什麼 #日本第一 #77台 #明治維新の成り立ち Hong Leong Insurance 豐隆保險Aigle VACA 小牛角 香港開電視 Hong Kong Open TV #逢星期日晚上十時半至十一時半
工程保險追溯 在 台灣物聯網實驗室 IOT Labs Facebook 八卦
醞釀整整一年,西門子翻開了加速工業互聯網落地的“王牌”【物女心經】
作者:物女王(彭昭)
物聯網智庫 整理發佈
導 讀
近日,西門子舉辦了一年一度面向分析師的年會,並在會上宣佈推出Xcelerator,這是一個MindSphere與Mendix融合之後的產物。我們都知道,MindSphere是西門子的工業互聯網平臺,Mendix是西門子在2018年8月收購的低代碼程式設計平臺,他們結合之後的Xcelerator是什麼?廢話不多說,我們馬上就來解讀。
上周的文章《讓物聯網應用開發全面提速,巨頭們用了“大”招》中我曾談到,在各種物聯網平臺你爭我奪的“大戰”中,很多公司正在悄悄地打磨自己的IoT程式設計工具。
這些舉措對於物聯網來說具有深遠影響,他們都指向同一個方向:改進程式設計工具、簡化程式設計環節、降低開發成本,是加速物聯網專案落地的一條捷徑。
這周,西門子有了進一步動作,對外公佈了自己的低代碼王牌。
9月3日至6日,在紐約,西門子舉辦了一年一度面向分析師的年會,其上西門子宣佈推出Xcelerator,這是一個MindSphere與Mendix融合之後的產物。
我們都知道,MindSphere是西門子的工業互聯網平臺,Mendix是西門子在2018年8月收購的低代碼程式設計平臺,他們結合之後的Xcelerator是什麼?
廢話不多說,我們馬上就來解讀。你會看到西門子此舉對於工業互聯網發展的教科書式的借鑒作用。
文中很多資料都是西門子在年會中首次公開,你將看到:
• 拆解Xcelerator,西門子推出Xcelerator的意義是什麼?
• IIoT平臺成為驅動西門子公司下一輪增長的最大引擎,這個引擎是虛胖還是實力?
• 西門子將技術拖入“零門檻”,能否碾壓物聯網應用的複雜性?
01
工業互聯網平臺+低代碼工具=Xcelerator
Xcelerator和Accelerator(加速器)諧音,沒錯,西門子正在觸發一次工業互聯網的加速。
西門子在發佈Xcelerator之時,曾開宗明義的說:它的意義是將“劣勢”變成“優勢”,“短板”轉為“長板”。具體到製造業,Xcelerator將製造業的複雜性轉變為競爭優勢。
“Most manufacturers struggle withcomplexity and look to limit it. But those who want to be the leader in theirfield need to be able to leverage complexity as a competitive advantage.”
“大多數製造商都在努力解決和消除複雜性。但那些希望成為領軍者的企業,需要有能力將複雜性變為競爭優勢,並從中獲益。”
那麼Xcelerator到底是什麼?
Xcelerator是一個軟體產品組合,由西門子工業互聯網平臺MindSphere提供底層支援。該組合中包含產品生命週期管理軟體PLM、電子設計自動化軟體EDA、應用程式生命週期管理軟體ALM、製造運營管理軟體MOM,以及西門子工業互聯網平臺MindSphere上的SaaS應用。
簡單的說,西門子把各種軟體、服務和開發能力都搬到了工業互聯網平臺MindSphere上,然後裝入了加速引擎Xcelerator。這就意味著Xcelerator包含了用於電氣設計、機械設計、系統模擬、生產製造、管理運營和生命週期分析的各種軟體和服務的組合。
Xcelerator怎麼將製造業的複雜性轉變為競爭優勢?
為了讓所有Xcelerator的使用者都能夠方便上手,並創建可追蹤的數位執行緒(Digital Thread),Xcelerator將Mendix低代碼平臺與原有的軟體產品打通,讓任何使用者不需要程式設計經驗,就可以輕鬆利用Mendix開發環境,創建、集成和擴展現有的資料和系統。
Mendix的首席執行官Derek Roos提到,西門子將通過Mendix開放其整個軟體產品組合,而且西門子還承諾通過Mendix可以實現西門子應用軟體和任何其他品牌的企業資源管理系統ERP、客戶關係管理系統CRM或者資產管理系統的互聯互通。
具體而言,Xcelerator的殺手鐧包括三個:
• 全方位的數字孿生
• 個性化配置
• 靈活開放的生態
我們分別來說。
• 全方位的數字孿生
西門子一直在宣導數字孿生的閉環。西門子的想法是從生產和設計的資料中建立產品和性能的數位孿生,實現決策過程的閉環,從而持續優化產品設計和製造過程。
這裡有必要提到一個概念:數字執行緒(Digital Thread)。數位執行緒為數位孿生提供訪問(Access)、整合(Integrate)和轉換(Transform)的能力,目標是貫通產品生命週期和價值鏈,實現全面追溯、雙向資訊共用和價值鏈協同。
數位孿生是物件、資料。數位執行緒是方法、通道、介面。數位執行緒交換和處理數位孿生的相關資訊。
西門子給出了實施案例。以HP印表機為例,數位執行緒的運用提升了列印噴頭的冷卻效率。資料顯示,列印噴頭冷卻機的流速提升22%,列印速度提高了大約15%,產品研發速度提升75%,部件成本降低了34%。
• 個性化適配
這裡西門子強調了IIoT雲戰略,並稱已經為工業互聯網雲端解決方案準備好了可擴展的環境,可以按照用戶的需求靈活部署。
Mendix是實現個性化配置的重要一環,它提供個性化的應用程式開發,加速創新過程。
西門子還在某些軟體中引入了“自我調整UI”的功能。自我調整UI是利用人工智慧AI演算法,根據使用者的使用狀態,自動呈現下一步操作命令的功能。根據西門子的統計,自我調整UI的準確率約為95%。
• 靈活開放的生態
西門子公開了相關的生態資料。
西門子的三維建模內核元件“Parasolid”全球使用者超過400萬,三維模型資料格式“JT”會員超過130名,它們已被許多公司採用,成為了行業的事實標準。西門子的PLM相關軟體在全球已經積累了超過9萬名開發者。
隨著生態系統的發展,西門子摸索了一套與合作夥伴有效協同的方法。
比如,西門子通過與IBM的資產管理軟體“MAXIMO”連接,實現了卡車運營時間和可用性的提升,以及運營成本的降低。西門子還與BentleySystems合作,提供印刷電路生產線的運營狀況管理方案,以及電廠的綜合資產績效解決方案。
為了更好的講清Mendix和Xcelerator的關係和定位,Mendix首席執行官DerekRoos進行瞭解讀。
在被西門子收購之時,Derek就判斷Mendix與西門子的結合將掀起一場有真正價值的“資料海嘯”。在西門子分析師年會上,Derek全程幾乎只講了一張圖,就是下面這張。
根據Derek的表述,Mendix低代碼平臺將成為所有西門子雲端解決方案的主要應用平臺,西門子的用戶可以利用Mendix在任何設備、任何位置、任何雲平臺上創建應用和分享資料。西門子的各種軟體系統正在踏上利用API逐步開放的新征程,Mendix將可訪問所有系統中的資料。
Mendix低代碼平臺將會增加一個新的特定領域應用服務層(Domain-Specific APPServices Layer),並且將會與MindSphere進行集成。
今年4月,Mendix還披露了自己的“登月計畫(Moon Shot)”,推出Mendix資料匯流排(DataHub)。Mendix資料匯流排通過將資料和系統抽象為跨越整個企業的資料虛擬化層,以克服在快速構建軟體解決方案時,資料難以集成的巨大瓶頸。
目前Mendix資料主線(DataHub)服務於西門子、SAP、Salesforce、微軟和IBM,這意味著利用Mendix,用戶可以在這些雲平臺上自由的使用各種應用和分享相關資料。
從Derek的用詞中判斷,一切即將發生,只是時間問題。
02
IIoT平臺成為驅動下一輪增長的最大引擎
西門子將MindSphere定義為下一輪增長的最大引擎。
從下圖中的圈層可以看出,MindSphere工業互聯網平臺、物聯網硬體、應用和分析服務、數位化企業…層層嵌套,MindSphere位於核心地位。
從資料上來看,MindSphere在遍佈17個國家的20個垂直行業取得了應用,吸引了超過1000名解決方案開發者、資料科學家和工程師。
以細節著稱的西門子,將企業的數位化成熟之路進行了詳細的劃分。
具體包含3大階段、6個步驟…以及7種服務。
至於3大階段、6個步驟、7種服務的具體內容,此處暫且略過,以後再做解讀。
總體而言,西門子的雲服務取得了不錯的成績。APP應用數量超過23.5萬,年度經常性營收ARR增長率超過40%,客戶超過1000家,開發者大於10萬名,合作夥伴650家,接入了超過140萬台聯網設備。
從業績指標來看,在剛剛過去的2019年第三季度,西門子渡過得格外艱難。數位化業務的銷售額和訂單量雙雙下降。
業務部門 第三季度銷售量 訂單量
數位化業務 -2% -5%
智慧基礎設施 2% 2%
天然氣和電力 -5% -15%
移動設備 -2% 18%
西門子醫療保險 6% 13%
西門子可再生能源 24% 42%
工業總量 2% 7%
就行業側重來看,西門子的數位化業務涵蓋離散自動化和流程自動化兩大領域。在離散自動化領域,由於汽車、製藥和機械製造等行業的生存環境變化,西門子受到了較大的影響。
因此在未來的幾個季度,西門子勢必將增長重心轉移到石油、礦山、天然氣、造紙等流程自動化領域。
03
讓技術進入“零門檻”時代
低代碼的最大作用,是推進一次關於成本的革命,完成一次從量變到質變的昇華。
這裡的成本包含時間成本和人員成本。
這兩項成本在新技術的變革中潛移默化的提升,而且居高不下。技術的改進提升了系統的複雜度、管理的複雜性和對人員的素質需求。很多工作需要具備全方位知識的綜合技能人才,或者多位工程師共同協作才能完成。有些時候甚至要求一名工程師既懂雲平臺、又懂網路、還懂移動設備,這並不現實…
這些都是新技術應用中看不見的門檻。
因此一組矛盾越來越激化,就是各種行業需求和IT供應能力之間的矛盾,行業需求的緊迫性和IT開發週期的時滯性之間的矛盾。
這些矛盾不但需要解決,而且需要形成數量級式的變化,才能真正打通新技術為各行各業賦能之路。
為了降低物聯網的應用門檻,互聯網時代IT軟體世界中的4個最核心的成員:作業系統、程式設計語言、編譯器和資料庫,在物聯網時代都將迎來全新的形態。
從作業系統到物聯網平臺,從程式設計語言到IoT低代碼程式設計工具,這個過程正在逐步推進。
回到本文的主角Xcelerator,它將工業互聯網平臺和低代碼程式設計工具整合到了一起,試圖降低開發者的參與難度和門檻,形成開發者的協作社區,快速滿足各行各業的用戶需求。
在工業領域,工業互聯網平臺是當前的最大變革。
網路效應是平臺模式區別於其他商業模式區的關鍵特徵。
網路效應是指越多的用戶和開發者在平臺上進行交互,平臺對潛在的新用戶和新開發者越有吸引力。當這種動態的吸引機制形成自發生長之後,平臺將進入自我增長的良性週期。
網路效應包含兩種,單邊效應和雙邊效應。單邊效應是指在平臺的一側彙聚形成網路效應,開發者吸引更多開發者、用戶吸引更多用戶;雙邊效應是指在平臺的兩側彙聚形成網路效應,更多開發者吸引更多用戶,更多用戶又吸引更多開發者。
工業互聯網平臺是雙邊或者多邊平臺,平臺上角色越多,管理越複雜。制造型企業往往要在多個使用場景中操作多種軟體,極其麻煩。“工業互聯網平臺”+“低代碼程式設計工具”+“靈活的開發者生態”這一組合,是西門子針對製造業的複雜性,給出的教科書式的解決之道。
莎士比亞說,“All the world’s a stage”,世界是個舞臺。工業互聯網又何嘗不是另一個舞臺,這個舞臺是不是足夠吸引人,還得看製造企業是否願意為Xcelerator買單。
本文小結:
1. 西門子將工業互聯網平臺MindSphere和低代碼程式設計平臺Mendix相結合,推出Xcelerator,試圖加速工業互聯網的落地速度。
2. 西門子並未透露雲平臺的營收關鍵資料,只是透露了應用與開發者等數量指標,對面全球經濟環境的不確定性,工業互聯網平臺的落地難度增大。
3. 無論結果如何,“工業互聯網平臺”+“低代碼程式設計工具”+“靈活的開發者生態”這一組合,是西門子針對製造業的複雜性,給出的教科書式的解決之道,具有借鑒意義。
資料來源:https://mp.weixin.qq.com/s?__biz=MjM5MTM5ODQyMA==&mid=2651217008&idx=1&sn=16efe62fe522458e8353b669da3f3fd6&chksm=bd44d30b8a335a1d11c8115718727cec6dc3c68f8768f172421c991e4cbe98cc5eef2c2f0402&scene=21#wechat_redirect
工程保險追溯 在 中華民國行政院公共工程委員會全球資訊網-政府採購論壇 的相關結果
(五)廠商未依契約規定辦理保險、保險範圍不足或未能自保險人獲得足額理賠者, ... 履約期間已過3分之一還剩3分之二廠商目前已補投保但保險無法往前追溯請問該如何處理 ... <看更多>
工程保險追溯 在 機關辦理工程保險採購注意事項 - 植根法律網 的相關結果
一、機關辦理工程採購,其由機關自行投保可獲得對機關較有利之承保範圍、保險費、保險條件、理賠服務等情形者,得將該工程之保險另案辦理採購。 ... <看更多>
工程保險追溯 在 工程保險及常見錯誤態樣 的相關結果
機關於工程契約中編列保險費用,要求廠商. 依契約約定之保險條件購買工程保險,檢據. 向機關估驗計價請領保險費用。 ... 險單載明該保單係立於105.11.30,並追溯保. ... <看更多>