晶圓代工大廠都想搶先布局的技術✨
第三代寬能隙半導體2021嶄露頭角,5G、電動車、再生能源、工業4.0發展上都需要它!
💡透過宜特小學堂,帶你來了解「第三代寬能隙半導體」吧 💡
👇👇想知道更多內容👇👇
https://technews.tw/?p=736674
寬能隙半導體wbg 在 COMPOTECHAsia電子與電腦 - 陸克文化 Facebook 八卦
#汽車電子 #功率元件 #碳化矽SiC #蕭特基二極體SBD #智慧功率模組IPM
【話說車載3:寬能隙半導體入主高功率應用】
動力系統是電動車/智能車主命脈。絕緣柵雙極電晶體 (IGBT)、高電壓閘極驅動器、超接面整流器、高電壓金屬氧化物半導體場效電晶體 (MOSFET)、高電壓 DC-DC,以及碳化矽 (SiC) 和氮化鎵 (GaN) 等新一代寬能隙 (WBG) 功率技術深深牽動著電池續航力與安全防護。
當電子從「價帶」(valence band,指絕對零度中電子最高能量的區域) 移動到「傳導帶」(conduction band,電子經由外在電場加速形成電流) 並用於電流時需要能量,寬能隙的能量遠高於矽——相較於矽的 1.1eV (電子伏特),SiC 需要 3.2 eV;意味著在相同尺寸下,這些額外能量可帶來更高的電壓擊穿性能,在失效前可承受更高的溫度,蕭特基二極體 (SBD)、高功率 MOSFET 是主要市場。
為提高能效,亦促成涵蓋驅動電路和控制單元,以定制集成電路執行供電欠壓、過溫和短路等自我保護功能的智慧功率模組 (IPM) 興起,以適應基本結構或設計變化,並提升系統可靠性。此外,先進的基板和封裝,則是高能效、散熱性、強固性等關鍵因素;例如,貼片式「電晶體外殼無引腳封裝」(Transistor Outline Leadless, TOLL;或簡稱為 TO-Lead-Less) 因散熱表現較佳,可藉此提高電流密度,特別適合動力轉向、無刷直流驅動、電池管理、電池安全開關等高功率應用。
延伸閱讀:
《適合汽車應用的技術解決方案》
https://www.avnet.com/…/transform-your-thinkin…/automotive/…
寬能隙半導體wbg 在 台灣應用材料公司 Applied Materials Taiwan Facebook 八卦
【氮化鎵技術的來臨-實現未來與應材的承諾】
-
你有沒有發現🤔
💡 智慧型手機的電池容量越來越大,充電速度卻更快!
💡 傳統的車用鉛酸電池,充電 7.5 小時只能行駛約 120 公里,但特斯拉的 Model 3 ,充電 35 分鐘就能行駛 499 公里!
💡 現今 700 多萬個數據中心的總消耗功率,相當於在 2019 年全球用電量所佔比例約 2%,所產生的二氧化碳排放量,幾乎等於全球航空業的二氧化碳排放量。
-
= = = = = = = = = = = = = = = = = = = = = =
與前兩代的半導體材料矽(Si)和砷化鎵(GaAs)相比,第三代的碳化矽(SiC)或氮化鎵(GaN)滿足了體積小、功率高、損耗少等要求,讓這些裝置近幾年在功能上突飛猛進,隨著氮化鎵技術的普遍應用,依據系統需求採用不同技術與材料的趨勢更加明確。
-
應材鑽研材料工程協助客戶實現未來的同時,
也致力履行對環境、社會及公司治理 (ESG) 的承諾,
提升晶片製造的節能效率,打造更加永續公正的供應鏈。
-
應材市場策略推廣總監 Llewellyn Vaughan-Edmunds
也分享了為生產氮化鎵裝置的縝密考量:
「 製造 GaN 元件的每個程序都必須非常精準,
才可以讓元件發揮最佳性能和可靠性。 」
製造GaN 元件,都考驗著MOCVD, Etch, CVD, PVD及電鍍等關鍵製程的要求。
- - - - - - - - - - - - - - - - - - - - -
👇來看專家更詳細的見解 👇
- - - - - - - - - - - - - - - - - - - - -
https://www.appliedmaterials.com/zh-hant/nanochip/nanochip-fab-solutions/july-2020/gan-technology-is-coming-of-age-as-power-consumption-grows
寬能隙半導體wbg 在 第三代寬能隙半導體到底在紅什麼?【宜特解你的痛EP.16】 的八卦
在 半導體 材料領域中,第一代 半導體 是矽(Si),第二代是砷化鎵(GaAs),而2021年嶄露頭角的第三代 寬能隙半導體 (Wide Band Gap, WBG )指的是碳化矽(SiC) 和 ... ... <看更多>